

Test-time Adaptation:

Formulations, Methods and Benchmarks

Riccardo Volpi

02 October 2023 1

Outline

- Problem formulation
 - From "standard" to "test-time" domain adaptation
- Stationary test-time adaptation
 - Benchmarks and methods
- Continual test-time adaptation
 - Additional challenges
 - Benchmarks and methods
- Conclusions

Learning i.i.d.

• **Domain shift**: the image distribution shift wrt train time $(P_X^{train} \neq P_X^{test})$

Learning i.i.d.

• **Domain shift**: the image distribution shift wrt train time $(P_X^{train} \neq P_X^{test})$

How to address domain shifts?

- A very large number of sub-fields
 - Supervised domain adaptation
 - Semi-supervised domain adaptation
 - Unsupervised domain adaptation
 - Domain generalization
 - ...

• We focus here on **test-time adaptation**

 "Standard" UDA: adapt from one or few source domains to one or few target domains

Adaptation happens offline

 "Standard" UDA: adapt from one or few source domains to one or few target domains

- Adaptation happens offline
- Can be
 - Transductive (adapt/test on same data)
 - Inductive (adapt/test on different data)

 "Standard" UDA: adapt from one or few source domains to one or few target domains

- Adaptation happens offline
- Can be
 - <u>Transductive</u> (adapt/test on same data)
 - Inductive (adapt/test on different data)

 "Standard" UDA: adapt from one or few source domains to one or few target domains

- Adaptation happens offline
- Can be
 - Transductive (adapt/test on same data)
 - **Inductive** (adapt/test on different data)

 "Source-free" UDA: adapt from one or few source domains to one or few target domains

- Adaptation happens offline
- Can be
 - Transductive (adapt/test on same data)
 - Inductive (adapt/test on different data)
- No access to the source dataset

"Test-time Adaptation"

- Adaptation can happen
 - Offline
 - Online

No access to the source dataset

"Test-time Adaptation" = "Source-free Adaptation"

- Adaptation can happen
 - Offline
 - Online

No access to the source dataset

"Test-time Adaptation"

4. *i*++, back to 2.

- Adaptation can happen
 - Offline
 - Online

We can also relax this assumption

No access to the source dataset

- "Continual TTA": frame-by-frame adaptation with continuous shifts
 - Samples are drawn from an ever-changing distribution $\longrightarrow (x_t)_0^{\infty} \sim P_t$
 - Each sample/batch X_t represents an adaptation problem in itself

- "Continual TTA": frame-by-frame adaptation with continuous shifts
 - Seminal works in this setting are from the NLP literature
 - (Dredzer and Crammer, EMNLP 2009)

(Related) Problem formulations

 Incremental UDA: offline adaption to sequential target domains at different stages

(Related) Problem formulations

• **Domain generalization:** there is no adaptation at all, we train on one (or more) domains and test on different ones

- Overall goal: adapting a given model to new batches of data
 - Extreme case: single-sample adaptation

- Self-training with pseudo-labels
- BatchNorm statistics adaptation
- BatchNorm parameters adaptation
- Self-supervised training
- Data augmentation

- Self-training with pseudo-labels
- Standard recipe
 - Trust (some of) your model's predictions
 - Use them as ground truth to update your model
 - Repeat
- Originally for semi-supervised learning
 - Large application in DA
 - Standard baseline in TTA

BatchNorm <u>statistics</u> adaptation

- In BN layers we generally use the statistics from the training set
- We can update them with the target's
 - Online [Mancini et al. 2018]
 - Offline [Schneider et al. 2020]
- Often important not to completely replace the training ones (weighted)

$$\widehat{F^l(x_i^t)} = \gamma \cdot \frac{F^l(x_i^t) - \mu_l}{\sigma_l^2} + \beta$$

$$\mu_l := (1 - \alpha) \cdot \mu_l + \alpha \cdot \mathbb{E}\{F^l(x_i^t)\}$$

$$\sigma_l^2 := (1 - \alpha) \cdot \sigma^2 + \alpha \cdot \mathbb{E}\{(F^l(x_i^t) - \mathbb{E}\{F^l(x_i^t)\})^2\}$$

- (Batch)Norm <u>parameters</u> adaptation
- Entropy minimization is another standard technique from semi-supervised learning
- But updating all network parameters cause huge drifts from the original model
- We can just update the BatchNorm parameters (or LayerNorm, etc.) via entropy minimization
- At the same time, we can update statistics

$$\operatorname*{argmin}_{\beta,\gamma} \mathcal{L}_{H} \coloneqq -\sum_{p \in x_{i}^{t}} \sum_{c}^{C} \hat{y}_{i,c}^{p} \log \hat{y}_{i,c}^{p}$$

Self-supervised learning

- We can solve a SSL objective using the test data
- Given a test-sample or a batch, we solve a SSL problem before making a prediction
- Note: SSL pre-training itself helps robustness
 - See Hendrycks et al., "Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty", NeurIPS 2019

Data augmentation

 We can generate several copies of the current batch and use some of the previously mentioned objectives (e.g. entropy minimization)

Benchmarks

- In general, train on one dataset and adapt to another one
- Researchers have mostly played with
 - ImageNet to ImageNet-C/A/R
 - CIFAR10 to CIFAR10-C
 - CIFAR100 to CIFAR100-C
- The only constraint, is that the set of classes need to be the same
 - TTA does not fit class-incremental purposes
 - We *could* have new classes, but we would be helpless

Benchmarks

	ImageNet-C mCE ↓	ImageNet-R Error (%)	ImageNet-A Error (%)
Baseline ResNet-50 [11]	76.7	63.9	100.0
+ TTA	77.9 (+1.2)	61.3 (-2.6)	98.4 (-1.6)
+ Single point BN	71.4 (-5.3)	61.1 (-2.8)	99.4 (-0.6)
+ MEMO (ours)	69.9 (-6.8)	58.8 (-5.1)	99.1 (-0.9)
+ BN (N = 256, n = 256)	61.6 (-15.1)	59.7(-4.2)	99.8 (-0.2)
+ Tent (online) [46]	54.4 (-22.3)	57.7(-6.2)	99.8 (-0.2)
+ Tent (episodic)	64.7 (-12.0)	$61.0\ (-2.9)$	99.7 (-0.3)

From Zhang et al., "NEMO: Test Time Robustness via Adaptation and Augmentation" NeurIPS 2022

Continual TTA

Addressing TTA in a continually evolving environment

Additional challenge: catastrophic forgetting

The OASIS benchmark

- (2022) Lack of benchmarks to assess segmentation models in these setting
- We introduced one
 - Image-by-image adaptation in sequences of temporally correlated frames
 - Fair and realistic pre-train/validate/deploy pipeline
 - Need to overcome catastrophic forgetting

The OASIS benchmark

- The goal is adapting frame-by-frame to streams of temporally correlated, unlabeled samples
- Each sample from the sequence $(x_t)_{t=1}^{\infty} \sim P_t$ represents an adaptation problem itself

- The goal is adapting frame-by-frame to streams of temporally correlated, unlabeled samples
- Each sample from the sequence $(x_t)_{t=1}^{\infty} \sim P_t$ represents an adaptation problem itself
- Baselines:
 - Self-training with pseudo-labels
 - BN statistics adaptation
 - BN parameters adaptation
 - Self-supervised training

- The goal is adapting frame-by-frame to streams of temporally correlated, unlabeled samples
- Each sample from the sequence $(x_t)_{t=1}^{\infty} \sim P_t$ represents an adaptation problem itself
- Baselines:
 - Self-training with pseudo-labels
 - BN statistics adaptation
 - BN parameters adaptation
 - Self-supervised training

- 1. Trust (some of) your model's predictions
- 2. Use them as ground truth to update your model
- 3. Repeat

- The goal is adapting frame-by-frame to streams of temporally correlated, unlabeled samples
- Each sample from the sequence $(x_t)_{t=1}^{\infty} \sim P_t$ represents an adaptation problem itself
- Baselines:
 - Self-training with pseudo-labels
 - BN statistics adaptation
 - BN parameters adaptation
 - Self-supervised training

$$\widehat{F^l(x_i^t)} = \gamma \cdot \frac{F^l(x_i^t) - \mu_l}{\sigma_l^2} + \beta$$

$$\mu_l := (1 - \alpha) \cdot \mu_l + \alpha \cdot \mathbb{E}\{F^l(x_i^t)\}$$

$$\sigma_l^2 := (1 - \alpha) \cdot \sigma^2 + \alpha \cdot \mathbb{E}\{(F^l(x_i^t) - \mathbb{E}\{F^l(x_i^t)\})^2\}$$

- The goal is adapting frame-by-frame to streams of temporally correlated, unlabeled samples
- Each sample from the sequence $(x_t)_{t=1}^{\infty} \sim P_t$ represents an adaptation problem itself
- Baselines:
 - Self-training with pseudo-labels
 - BN statistics adaptation
 - BN parameters adaptation
 - Self-supervised training

BN statistics adaptation

$$lpha_{eta, \gamma}^{oldsymbol{+}} \mathcal{L}_H \coloneqq -\sum_{p \in x_i^t} \sum_{c}^C \hat{y}_{i, c}^p \log \hat{y}_{i, c}^p$$

- The goal is adapting frame-by-frame to streams of temporally correlated, unlabeled samples
- Each sample from the sequence $(x_t)_{t=1}^{\infty} \sim P_t$ represents an adaptation problem itself
- Baselines:
 - Self-training with pseudo-labels
 - BN statistics adaptation
 - BN parameters adaptation
 - Self-supervised training

Solve a side SSL objective on the target samples

Catastrophic forgetting

- The goal is adapting **frame-by-frame** to streams of **temporally correlated**, **unlabeled samples**
- Each sample from the sequence $(x_t)_{t=1}^{\infty} \sim P_t$ represents an adaptation problem itself
- Main problem: like often in continual learning, catastrophic forgetting
- We're learning in an unsupervised way, so it's not trivial how to avoid the model to forget classes.
- Classes that are more rare will disappear, leaving their space to the more abundant ones
- **Example:** in urban street segmentation, it's easy to forget about *things* (countable objects), overtaken by the more abundant *stuff* (street, sky, buildings, etc.)

Catastrophic forgetting

- The goal is adapting **frame-by-frame** to streams of **temporally correlated**, **unlabeled samples**
- Each sample from the sequence $(x_t)_{t=1}^{\infty} \sim P_t$ represents an adaptation problem itself
- Main problem: like often in continual learning, catastrophic forgetting

Catastrophic forgetting

- The goal is adapting frame-by-frame to streams of temporally correlated, unlabeled samples
- Each sample from the sequence $(x_t)_{t=1}^{\infty} \sim P_t$ represents an adaptation problem itself

Some solutions:

- "Naive" learning: instead of doing continual learning, at each frame re-start from the original model
- Memories: keep rehearsing the original (labelled) training samples to the model
- Reset strategies: use the original model as a checkpoint, and reset when some thershold is met

Evaluation

- 1. Compute mIoU for each frame
- 2. Average across each sequence
 - 3. Average across dataset

• **Effect of pre-training** (no adaptation)

Training	SYNTHIA	ACDC	Cityscapes A.W.	Cityscapes O.
ERM	35.9 ± 2.5	29.5 ± 2.5	35.6 ± 1.9	40.3 ± 0.9
DR↑	34.3 ± 3.3	29.5 ± 2.4	36.2 ± 2.3	41.2 ± 1.0
DR↑↑	39.8 ± 3.0	33.6 ± 2.5	38.3 ± 2.6	$\textbf{45.2} \pm \textbf{1.0}$
DR↑↑↑	31.9 ± 3.0	26.7 ± 2.3	33.2 ± 2.5	37.7 ± 1.1

A.W. = Artificial Weather O. = Original

More cont. TTA methods and benchmarks

CoTTA

- Pseudo-labeling
- Augmentations
- Random weight reset

Benchmarks

- CIFAR10 to CIFAR10-C
- CIFAR100 to CIFAR100-C
- ImageNet to ImageNet-C
- Cityscapes to ACDC

Avg. Error (%)	Source	BN Adapt	Test Aug [5]	TENT [58]	CoTTA
ImageNet-C	82.4	72.1	71.4	66.5	$63.0 \pm 1.8 (0.1)$

Continual TTA in related areas

- We focused on 2D tasks here... but there's more
- Online adaptation for kitting
 - Mancini et al., Kitting in the Wild through Online Domain Adaptation, IROS 2018
- Online adaptation for depth estimation
 - Tonioni et al., Learning to Adapt for Stereo, CVPR 2019
 - Tonioni et al., Real-time Self-Adaptive Deep Stereo, CVPR 2019
- Continual TTA for 3D lidar segmentation tasks
 - Saltori et al., GIPSO: Geometrically Informed Propagation for Online Adaptation in 3D LiDAR Segmentation, ECCV 2022

Test-time augmentations

(Active) test-time augmentation can be framed as test-time adaptation

Conclusions

- Test-time adaptation is a recent and active research area
- Yet, its roots are from well established fields
 - Domain adaptation
 - Online learning
 - Self-training
- Its continual counterpart introduces additional challenges
 - Catastrophic forgetting
 - Evaluating in a ever-changing environments

No representation learning

- (NLP) Dredze and Crammer, Online Methods for Multi-Domain Learning and Adaptation, EMNLP 2008
- (NLP) Giuliani et al., On-line speaker adaptation on telephony speech data with adaptively trained acoustic models, ICASSP 2009
- (supervised) Zao and Hoi, OTL: A Framework of Online Transfer Learning, ICML 2010
- Hoffman et al., Continuous Manifold Based Adaptation For Evolving Visual Domains, CVPR 2014
- (supervised) Xu et al., Incremental Domain Adaptation of Deformable Part-based Models, BMVC 2014
- Lampert, <u>Predicting the Future Behavior of a Time-Varying Probability Distribution</u>, CVPR 2015
- Soleymani et al., <u>Incremental Evolving Domain Adaptation</u>, IEEE Transactions on Knowledge and Data Engineering 2016
- Li et al., <u>Domain Generalization and Adaptation Using Low Rank Exemplar SVMs</u>, TPAMI 2018
- Moon et al., <u>Multi-step Online Unsupervised Domain Adaptation</u>, ICASSP 2020

Deep learning-based

- Mancini et al., <u>Kitting in the Wild through Online Domain Adaptation</u>, IROS 2018
- Zhang et al., Online Adaptation through Meta-Learning for Stereo Depth Estimation, arXiv 2019
- Ashukha et al., <u>Pitfalls of in-Domain Uncertainty Estimation and Ensembling in Deep Learning</u>, ICLR 2020
- Sun et al., <u>Test-Time Training with Self-Supervision for Generalization under Distribution Shifts</u>, ICML 2020
- Schneider et al., <u>Improving robustness against common corruptions by covariate shift adaptation</u>, NeurIPS 2020
- Wang et al., <u>Tent: Fully Test-time Adaptation by Entropy Minimization</u>, ICLR 2021
- Ikasawa and Matsuo, Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization, NeurIPS 2021
- Liu et al., TTT++: When Does Self-Supervised Test-Time Training Fail or Thrive?, NeurIPS 2021

Deep learning-based

- Nado et al., Evaluating Prediction-Time Batch Normalization for Robustness under Covariate Shift, ICML 2020 Woskshops
- Karani et al., <u>A Field of Experts Prior for Adapting Neural Networks at Test Time</u>, arXiv 2022
- Xiao et al., <u>Learning to Generalize across Domains on Single Test Samples</u>, ICLR 2022
- Volpi et al., On the Road to Online Adaptation for Semantic Image Segmentation, CVPR 2022
- Wange et al., <u>Continual Test-Time Domain Adaptation</u>, CVPR 2022
- Klingner et al., Continual BatchNorm Adaptation (CBNA) for Semantic Segmentation, IEEE T. on Intelligent Transportation Systems 2022
- Chen et al., <u>Contrastive Test-Time Adaptation</u>, CVPR 2022
- Valanarasu et al., <u>On-the-Fly Test-time Adaptation for Medical Image Segmentation</u>, MIDL 2023
- Yang et al., <u>Test-time Batch Normalization</u>, arXiv 2022
- Bateson et al., <u>Test-Time Adaptation with Shape Moments for Image Segmentation</u>, MICCAI 2022
- Jung et al., <u>CAFA: Class-Aware Feature Alignment for Test-Time Adaptation</u>, arXiv 2022
- Gao et al., <u>Back to the Source: Diffusion-Driven Test-Time Adaptation</u>, CVPR 2023
- Rusak et al., <u>If your data distribution shifts, use self-learning</u>, TMLR 2022
- Niu et al., Efficient Test-Time Model Adaptation without Forgetting, ICML 2022
- Choi et al., Improving Test-Time Adaptation via Shift-agnostic Weight Regularization and Nearest Source Prototypes, ECCV 2022
- Liu et al., Single-domain Generalization in Medical Image Segmentation via Test-time Adaptation from Shape Dictionary, AAAI 2022
- Kojima et al., Robustifying Vision Transformer without Retraining from Scratch by Test-Time Class-Conditional Feature Alignment, IJCAI 2022

Deep learning-based

- Thopalli et al., <u>Domain Alignment Meets Fully Test-Time Adaptation</u>, ACML 2022
- Ma et al., Test-time Adaptation with Calibration of Medical Image Classification Nets for Label Distribution Shift, MICCAI 2022
- Saltori et al., GIPSO: Geometrically Informed Propagation for Online Adaptation in 3D LiDAR Segmentation, ECCV 2022
- Cordier et al., <u>Test-Time Adaptation with Principal Component Analysis</u>, ECML/PKDD workshops 2022
- Frey et al., Continual Adaptation of Semantic Segmentation using Complementary 2D-3D Data Representations, RAL 2022
- Boudiaf et al., <u>Parameter-free Online Test-time Adaptation</u>, CVPR 2022
- Gandelsman et al., <u>Test-Time Training with Masked Autoencoders</u>, NeurIPS 2022
- Zhang et al., <u>MEMO: Test Time Robustness via Adaptation and Augmentation</u>, NeurIPS 2022
- Shu et al., <u>Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language Models</u>, NeurIPS 2022
- Goyal et al., <u>Test-time Adaptation via Conjugate Pseudo-labels</u>, NeurIPS 2022
- Sinha et al., <u>TeST: Test-time Self-Training under Distribution Shift</u>, WACV 2023
- Khurana et al., <u>SITA: Single Image Test-time Adaptation</u>, arXiv 2021
- Lin et al., Video Test-Time Adaptation for Action Recognition, CVPR 2023
- Yu et al., <u>Mitigating Forgetting in Online Continual Learning via Contrasting Semantically Distinct Augmentations</u>, arXiv 2022
- Lim et al., <u>TTN: A Domain-Shift Aware Batch Normalization in Test-Time Adaptation</u>, ICLR 2023
- Gaillochet et al., <u>TAAL: Test-time Augmentation for Active Learning in Medical Image Segmentation</u>, MICCAI-DALI 2022
- Han et al., <u>Rethinking Precision of Pseudo Label: Test-Time Adaptation via Complementary Learning</u>, arXiv 2023

Deep learning-based

- Ma et al., Test-time Adaptation with Calibration of Medical Image Classification Nets for Label Distribution Shift, MICCAI 2022
- Qian and del Hougne, Noise-Adaptive Intelligent Programmable Meta-Imager, arXiv 2022
- Jung et al., <u>CAFA: Class-Aware Feature Alignment for Test-Time Adaptation</u>, arXiv 2023
- Das et al., <u>TransAdapt: A Transformative Framework for Online Test Time Adaptive Semantic Segmentation</u>, ICASSP 2023
- Yang et al., <u>AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection</u>, arXiv 2023
- Liang et al., <u>A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts</u>, arXiv 2023
- Yu et al., <u>Benchmarking Test-Time Adaptation against Distribution Shifts in Image Classification</u>, arXiv 2023
- Lim et al., TTN: A Domain-Shift Aware Batch Normalization in Test-Time Adaptation, ICLR 2023
- Li et al., On the Robustness of Open-World Test-Time Training: Self-Training with Dynamic Prototype Expansion, ICCV 2023
- Zhang et al., <u>DomainAdaptor: A Novel Approach to Test-time Adaptation</u>, arXiv 2023
- Hakim et al., ClusT3: Information Invariant Test-Time Training, ICCV 2023
- Bertrand et al., <u>Test-time Training for Matching-based Video Object Segmentation</u>, NeurIPS 2023

Many works surely missing, please also check

- https://github.com/tim-learn/awesome-test-time-adaptation
- https://github.com/YuejiangLIU/awesome-source-free-test-time-adaptation

Acknowledgments

Tyler Haves

Diane Larlus

Grégory Rogez

NAVER LABS Europe