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Learning i.i.d.

• Domain shift: the image distribution shift wrt train time (𝑃!"#$%& ≠ 𝑃!"'(")
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Learning algorithm Trained model 𝜃∗

Images Masks

Model 𝜃"

Images from Cordts et al. CVPR 2016 (CityScapes) and Xie et al., NeurIPS 2021 (SegFormer)



Learning i.i.d.
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Model 𝜃∗

𝑥~ 𝑃#$%&'

𝑃#$%&'

𝑥~ 𝑃'&()#
𝑃'&()#

𝑥~ 𝑃*%+'

𝑃*%+'

• Domain shift: the image distribution shift wrt train time (𝑃!"#$%& ≠ 𝑃!"'(")



How to address domain shifts?

• A very large number of sub-fields
• Supervised domain adaptation
• Semi-supervised domain adaptation
• Unsupervised domain adaptation
• Domain generalization
• …
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• We focus here on test-time adaptation



Problem formulation
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Problem formulation

7

• “Standard” UDA: adapt from one or few source domains 
to one or few target domains

𝑷𝑺

𝑷𝑻
• Adaptation happens offline

𝑿𝑺, 𝒀𝑺 ~𝑷𝑺

Adapt to 𝑷𝑻

Model 𝜃 𝜃,→.

Blitzer et al., “Domain Adaptation with Structural Correspondence Learning”, EMNLP 2006



Problem formulation
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• “Standard” UDA: adapt from one or few source domains 
to one or few target domains

𝑷𝑺

𝑷𝑻
• Adaptation happens offline

• Can be
• Transductive (adapt/test on same data)
• Inductive (adapt/test on different data)

𝑿𝑺, 𝒀𝑺 ~𝑷𝑺

Adapt to 𝑷𝑻

Model 𝜃 𝜃,→.

Kouw and Loog, “A Review of Domain Adaptation without Target Labels”, TPAMI 2021



Problem formulation
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• “Standard” UDA: adapt from one or few source domains 
to one or few target domains

𝑷𝑺

𝑷𝑻
• Adaptation happens offline

• Can be
• Transductive (adapt/test on same data)
• Inductive (adapt/test on different data)

𝑿𝑺, 𝒀𝑺 ~𝑷𝑺

Model 𝜃 𝜃,→.

Adapt to 𝑿𝑻 ~𝑷𝑻
Eval on 𝑿𝑻~𝑷𝑻



Problem formulation

10

• “Standard” UDA: adapt from one or few source domains 
to one or few target domains

𝑷𝑺

𝑷𝑻
• Adaptation happens offline

• Can be
• Transductive (adapt/test on same data)
• Inductive (adapt/test on different data)

𝑿𝑺, 𝒀𝑺 ~𝑷𝑺

Adapt to 𝑿𝑻 ~𝑷𝑻

Model 𝜃 𝜃,→.

Eval on (𝑿𝑻~𝑷𝑻



Problem formulation
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• “Source-free” UDA: adapt from one or few source
domains to one or few target domains

𝑷𝑺

𝑷𝑻
• Adaptation happens offline

• No access to the source dataset𝑿𝑺, 𝒀𝑺 ~𝑷𝑺

Adapt to 𝑷𝑻

Model 𝜃 𝜃,→.

• Can be
• Transductive (adapt/test on same data)
• Inductive (adapt/test on different data)

Chidlovskii et al., “Domain Adaptation in the Absence of Source Domain Data”, SIGKDD 2016



Problem formulation
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• “Test-time Adaptation”

𝑷𝑺

𝑷𝑻
• Adaptation can happen
• Offline
• Online

𝑿𝑺, 𝒀𝑺 ~𝑷𝑺

Adapt to 𝑷𝑻

Model 𝜃 𝜃,→.

• No access to the source dataset

Wang et al., “Tent: Fully Test-time Adaptation by Entropy Minimization” ICLR 2021



Problem formulation
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• “Test-time Adaptation” = “Source-free Adaptation” 

𝑷𝑺

𝑷𝑻
• Adaptation can happen
• Offline
• Online

𝑿𝑺, 𝒀𝑺 ~𝑷𝑺

Model 𝜃 𝜃,→.

• No access to the source dataset

1. Adapt to (dataset) 𝑿𝑻 ~𝑷𝑻
2. Eval on (dataset) 𝑿𝑻~𝑷𝑻

Chidlovskii et al., “Domain Adaptaiton in the Absence of Source Domain Data”, SIGKDD 2016
Wang et al., “Tent: Fully Test-time Adaptation by Entropy Minimization” ICLR 2021



Problem formulation
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• “Test-time Adaptation”

𝑷𝑺

𝑷𝑻
• Adaptation can happen
• Offline
• Online

𝑿𝑺, 𝒀𝑺 ~𝑷𝑺

Model 𝜃 𝜃,→.

• No access to the source dataset

2. Adapt to (batch) 𝑿𝑻𝒊 ~𝑷𝑻
3. Eval on (batch) 𝑿𝑻𝒊 ~𝑷𝑻

1. 𝑖 = 0

4. 𝑖++, back to 2.

We can also relax 
this assumption

Wang et al., “Tent: Fully Test-time Adaptation by Entropy Minimization” ICLR 2021



Problem formulation
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𝑷𝒕
𝑥-

𝑥.
𝑥/

𝑥0 𝑥"…

𝒙𝒕 𝟎
&~𝑷𝒕

Model 𝜃

• “Continual TTA”: frame-by-frame adaptation with continuous shifts

• Samples are drawn from an ever-changing distribution

• Each sample/batch 𝑿𝒕 represents an adaptation problem in itself



Problem formulation
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𝑷𝒕
𝑥-

𝑥.
𝑥/

𝑥0 𝑥"…

Model 𝜃

• “Continual TTA”: frame-by-frame adaptation with continuous shifts

• Seminal works in this setting are from the NLP literature

• (Dredzer and Crammer, EMNLP 2009) 

• (Giuliani et al., ICAASP 2009)

Dredzer and Crammer, “Online Methods for Multi-domain Learning and Adaptation”, EMNLP 2009
Giuliani et al., “On-line speaker adaptation on telephony speech data with adaptively trained acoustic models”, ICAASP 2009



(Related) Problem formulations
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𝑷𝑺 𝑷𝑻𝟏 𝑷𝑻𝟐

𝑿𝑺, 𝒀𝑺 ~𝑷𝑺 𝑿𝑻𝟏~𝑷𝑻𝟏 𝑿𝑻𝟐~𝑷𝑻𝟐

…

• Incremental UDA: offline adaption to sequential target 
domains at different stages



(Related) Problem formulations
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𝑷𝑺

𝑷𝑻𝟏 𝑷𝑻𝟐

𝑿𝑺, 𝒀𝑺 ~𝑷𝑺

𝑿𝑻𝟏~𝑷𝑻𝟏 𝑿𝑻𝟐~𝑷𝑻𝟐

• Domain generalization: there is no adaptation at all, we 
train on one (or more) domains and test on different ones

Train

Test
Test
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• Overall goal: adapting a given model to new batches of data
• Extreme case: single-sample adaptation

𝜃 ?
• Update model weights in order to 

maximize our chances of correct prediction

• We’re not given any label

Image from Hendrycks and Dietterich “Benchmarking Neural Network Robustness to Common Corruptions and Perturbations”, ICLR 2019



Methods
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• Self-training with pseudo-labels
• BatchNorm statistics adaptation
• BatchNorm parameters adaptation
• Self-supervised training
• Data augmentation

𝜃 ?



Methods

22

• Self-training with pseudo-labels

• Standard recipe
• Trust (some of) your model’s predictions
• Use them as ground truth to update your model
• Repeat

• Originally for semi-supervised learning
• Large application in DA
• Standard baseline in TTA

Lee et al., “Pseudo-label: The Simple and Efficient Semi-supervised Learning Method for Deep Neural Networks” ICMLW 2013



Methods
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• BatchNorm statistics adaptation

Mancini et al., “Kitting in the Wild through Online Domain Adaptation” IROS 2018
Schneider et al., “Improving robustness against common corruptions by covariate shift adaptation”, NeurIPS 2020

• In BN layers we generally use the statistics 
from the training set

• We can update them with the target’s
• Online [Mancini et al. 2018]
• Offline [Schneider et al. 2020]

• Often important not to completely replace 
the training ones (weighted)



Methods
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• (Batch)Norm parameters adaptation

• Entropy minimization is another standard 
technique from semi-supervised learning

• But updating all network parameters cause 
huge drifts from the original model

• We can just update the BatchNorm
parameters (or LayerNorm, etc.) via 
entropy minimization

• At the same time, we can update statistics

Wang et al., “Tent: Fully Test-time Adaptation by Entropy Minimization” ICLR 2021



Methods
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• Self-supervised learning

• We can solve a SSL objective using the test data 

• Given a test-sample or a batch, we solve a SSL problem before making a prediction

• Note: SSL pre-training itself helps robustness
• See Hendrycks et al., “Using Self-Supervised Learning Can Improve Model 

Robustness and Uncertainty”, NeurIPS 2019

Sun et al., “Test-Time Training with Self-Supervision for Generalization under Distribution Shifts” ICML 2020
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• Data augmentation

• We can generate several 
copies of the current batch 
and use some of the 
previously mentioned 
objectives (e.g. entropy 
minimization)

Zhang et al., “NEMO: Test Time Robustness via Adaptation and Augmentation” NeurIPS 2022



Benchmarks

27

• In general, train on one dataset and adapt to another one

• Researchers have mostly played with
• ImageNet to ImageNet-C/A/R
• CIFAR10 to CIFAR10-C
• CIFAR100 to CIFAR100-C

• The only constraint, is that the set of classes need to be the same
• TTA does not fit class-incremental purposes
• We *could* have new classes, but we would be helpless



Benchmarks
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From Zhang et al., “NEMO: Test Time Robustness via Adaptation and Augmentation” NeurIPS 2022



Continual TTA
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• Addressing TTA in a continually evolving environment

𝑷𝒕
𝑥-

𝑥.
𝑥/

𝑥0 𝑥"…

Model 𝜃

• Additional challenge: catastrophic forgetting



The OASIS benchmark
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• We introduced one

• Image-by-image adaptation in sequences of temporally correlated frames

• Fair and realistic pre-train/validate/deploy pipeline

• Need to overcome catastrophic forgetting

Volpi et al., “On the Road to Online Adaptation for Semantic Image Segmentation” CVPR 2022

• (2022) Lack of benchmarks to assess segmentation models in these setting



The OASIS benchmark
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• The goal is adapting frame-by-frame to streams of temporally correlated, unlabeled samples
• Each sample from the sequence 𝑥' '()

& ~ 𝑃' represents an adaptation problem itself

12

Goal: adapting a model online
on a sequential set of images with shifting distribution

3) The best validated online 
adaptation strategy 

is applied to the test set

Deploy

Images from the training set (GTA-5 [1])

1) Initial model is
pre-trained offline

!! !"

!"

Adaptation

Stream of images from a validation sequence (SYNTHIA [2])

Stream of images from a test sequence (ACDC [3])

DomainsAdaptation

Initialization

Domains

Initialization

Best validated strategy

2) Several online 
adaptation strategies 
are compared on the 

validation set

Validation
Pre-train

Volpi et al., “On the Road to Online Adaptation for Semantic Image Segmentation” CVPR 2022
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• The goal is adapting frame-by-frame to streams of temporally correlated, unlabeled samples
• Each sample from the sequence 𝑥' '()

& ~ 𝑃' represents an adaptation problem itself

• Baselines:
• Self-training with pseudo-labels
• BN statistics adaptation
• BN parameters adaptation
• Self-supervised training
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• The goal is adapting frame-by-frame to streams of temporally correlated, unlabeled samples
• Each sample from the sequence 𝑥' '()

& ~ 𝑃' represents an adaptation problem itself

• Baselines:
• Self-training with pseudo-labels
• BN statistics adaptation
• BN parameters adaptation
• Self-supervised training

1. Trust (some of) your model’s predictions
2. Use them as ground truth to update your model
3. Repeat

Lee et al., “Pseudo-label: The Simple and Efficient Semi-supervised Learning Method for Deep Neural Networks” ICMLW 2013
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• The goal is adapting frame-by-frame to streams of temporally correlated, unlabeled samples
• Each sample from the sequence 𝑥' '()

& ~ 𝑃' represents an adaptation problem itself

• Baselines:
• Self-training with pseudo-labels
• BN statistics adaptation
• BN parameters adaptation
• Self-supervised training

Schneider et al., “Improving robustness against common corruptions by covariate shift adaptation”, NeurIPS 2020
Mancini et al., “Kitting in the Wild through Online Domain Adaptation” IROS 2018
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• The goal is adapting frame-by-frame to streams of temporally correlated, unlabeled samples
• Each sample from the sequence 𝑥' '()

& ~ 𝑃' represents an adaptation problem itself

• Baselines:
• Self-training with pseudo-labels
• BN statistics adaptation
• BN parameters adaptation
• Self-supervised training

BN statistics adaptation
+

Wang et al., “Tent: Fully Test-time Adaptation by Entropy Minimization” ICLR 2021
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• The goal is adapting frame-by-frame to streams of temporally correlated, unlabeled samples
• Each sample from the sequence 𝑥' '()

& ~ 𝑃' represents an adaptation problem itself

• Baselines:
• Self-training with pseudo-labels
• BN statistics adaptation
• BN parameters adaptation
• Self-supervised training

Solve a side SSL objective on the target samples

Sun et al., “Test-Time Training with Self-Supervision for Generalization under Distribution Shifts” ICML 2020



Catastrophic forgetting
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• The goal is adapting frame-by-frame to streams of temporally correlated, unlabeled samples
• Each sample from the sequence 𝑥' '()

& ~ 𝑃' represents an adaptation problem itself

• Main problem: like often in continual learning, catastrophic forgetting
• We’re learning in an unsupervised way, so it’s not trivial how to avoid the model to forget classes.
• Classes that are more rare will disappear, leaving their space to the more abundant ones

• Example: in urban street segmentation, it’s easy to forget about things (countable objects), 
overtaken by the more abundant stuff (street, sky, buildings, etc.)

Volpi et al., “On the Road to Online Adaptation for Semantic Image Segmentation” CVPR 2022



Catastrophic forgetting
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• The goal is adapting frame-by-frame to streams of temporally correlated, unlabeled samples
• Each sample from the sequence 𝑥' '()

& ~ 𝑃' represents an adaptation problem itself

• Main problem: like often in continual learning, catastrophic forgetting

Volpi et al., “On the Road to Online Adaptation for Semantic Image Segmentation” CVPR 2022



Catastrophic forgetting
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• The goal is adapting frame-by-frame to streams of temporally correlated, unlabeled samples
• Each sample from the sequence 𝑥' '()

& ~ 𝑃' represents an adaptation problem itself

• Some solutions:
• “Naive” learning: instead of doing continual learning, at each frame re-start from the original model
• Memories: keep rehearsing the original (labelled) training samples to the model
• Reset strategies: use the original model as a checkpoint, and reset when some thershold is met

Volpi et al., “On the Road to Online Adaptation for Semantic Image Segmentation” CVPR 2022
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• Evaluation
1. Compute mIoU for each frame
2. Average across each sequence

3. Average across dataset

• Effect of pre-training (no adaptation)

A.W. = Artificial Weather     O. = Original

Volpi et al., “On the Road to Online Adaptation for Semantic Image Segmentation” CVPR 2022
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Rain Night Snow Fog

Images processed (sequence steps)
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Volpi et al., “On the Road to Online Adaptation for Semantic Image Segmentation” CVPR 2022
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Rain Night Snow Fog

Images processed (sequence steps)

m
Io

U
 [0

-1
]

0 50 100 150 200 250
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Example of one 
ACDC sequence

N-PL
C-PL

Class-R-PL

Volpi et al., “On the Road to Online Adaptation for Semantic Image Segmentation” CVPR 2022
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Results

44Volpi et al., “On the Road to Online Adaptation for Semantic Image Segmentation” CVPR 2022

(Image from “The Bear”, FX)



More cont. TTA methods and benchmarks

45Wang et al., “Continual Test-time Domain Adaptation” CVPR 2022

• CoTTA
• Pseudo-labeling
• Augmentations
• Random weight reset

• Benchmarks
• CIFAR10 to CIFAR10-C
• CIFAR100 to CIFAR100-C
• ImageNet to ImageNet-C
• Cityscapes to ACDC

ImageNet to ImageNet-C



Continual TTA in related areas
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• We focused on 2D tasks here... but there’s more

• Online adaptation for kitting
• Mancini et al., Kitting in the Wild through Online Domain Adaptation, IROS 2018

• Online adaptation for depth estimation
• Tonioni et al., Learning to Adapt for Stereo, CVPR 2019
• Tonioni et al., Real-time Self-Adaptive Deep Stereo, CVPR 2019

• Continual TTA for 3D lidar segmentation tasks
• Saltori et al., GIPSO: Geometrically Informed Propagation for Online Adaptation in 3D 

LiDAR Segmentation, ECCV 2022



Test-time augmentations
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• (Active) test-time augmentation can be framed as test-time adaptation

Kim et al., “Learning Loss for Test-Time Augmentation” NeurIPS 2020



Conclusions

• Test-time adaptation is a recent and active research area

• Yet, its roots are from well established fields
• Domain adaptation
• Online learning
• Self-training

• Its continual counterpart introduces additional challenges
• Catastrophic forgetting
• Evaluating in a ever-changing environments

48
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