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ABSTRACT
Semantic image segmentation (SiS) plays a fundamental role
in a broad variety of computer vision applications, providing
key information for the global understanding of an image.
This survey is an effort to summarize two decades of research
in the field of SiS, where we propose a literature review of
solutions starting from early historical methods followed by
an overview of more recent deep learning methods including
the latest trend of using transformers. We complement the
review by discussing particular cases of the weak supervision
and side machine learning techniques that can be used
to improve the semantic segmentation such as curriculum,
incremental or self-supervised learning.
State-of-the-art SiS models rely on a large amount of an-
notated samples, which are more expensive to obtain than
labels for tasks such as image classification. Since unlabeled
data is instead significantly cheaper to obtain, it is not
surprising that Unsupervised Domain Adaptation (UDA)
reached a broad success within the semantic segmentation
community. Therefore, a second core contribution of this
monograph is to summarize five years of a rapidly growing
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field, Domain Adaptation for Semantic Image Segmentation
(DASiS) which embraces the importance of semantic segmen-
tation itself and a critical need of adapting segmentation
models to new environments. In addition to providing a
comprehensive survey on DASiS techniques, we unveil also
newer trends such as multi-domain learning, domain gener-
alization, domain incremental learning, test-time adaptation
and source-free domain adaptation. Finally, we conclude
this survey by describing datasets and benchmarks most
widely used in SiS and DASiS and briefly discuss related
tasks such as instance and panoptic image segmentation, as
well as applications such as medical image segmentation.
We hope that this monograph will provide researchers across
academia and industry with a comprehensive reference guide
and will help them in fostering new research directions in
the field.



Preface

Semantic image segmentation (SiS) plays a fundamental role towards a
general understanding of the image content and context. In concrete
terms, the goal is to label image pixels with the corresponding semantic
classes and to provide boundaries of the class objects, easing the under-
standing of object appearances and the spatial relationships between
them. Therefore, it represents an important task towards the design of
artificial intelligent systems. Indeed, systems such as intelligent robots
or autonomous cars should have the ability to coherently understand
visual scenes, in order to perceive and reason about the environment
holistically.

Hence, semantic scene understanding is a key element of advanced
driving assistance systems (ADAS) and autonomous driving (AD) (Te-
ichmann et al., 2018; Hofmarcher et al., 2019) as well as robot navigation
(Zurbrügg et al., 2022). The information derived from visual signals is
generally combined with other sensors such as radar and/or LiDAR to
increase the robustness of the artificial agent’s perception of the world
(Yurtsever et al., 2020). Semantic segmentation fuels applications in
the fields of robotic control and task learning (Fang et al., 2018; Hong
et al., 2018b), medical image analysis (see Section 4.3), augmented
reality (DeChicchis, 2020; Turkmen, 2019), satellite imaging (Ma et al.,
2019) and many others.
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The growth of interest in these topics has also been caused by recent
advances in deep learning, which allowed a significant performance boost
in many computer vision tasks – including semantic image segmentation.
Understanding a scene at the semantic level has long been a major topic
in computer vision, but only recent progress in the field has allowed
machine learning systems to be robust enough to be integrated into
real-world applications.

The success of deep learning methods typically depends on the
availability of large amounts of annotated training data, but manual
annotation of images with pixel-wise semantic labels is an extremely
tedious and time consuming process. As the major bottleneck in SiS
is the high cost of manual annotation, many methods rely on graphics
platforms and game engines to generate synthetic data and use them
to train segmentation models. The main advantage of such synthetic
rendering pipelines is that they can produce a virtually unlimited amount
of labeled data. Due to the constantly increasing photo-realism of the
rendered datasets, the models trained on them yield good performance
when tested on real data. Furthermore, they allow to easily diversify
data generation, simulating various environments and weather/seasonal
conditions, making such data generation pipeline suitable to support
the design and training of SiS models for the real world.

While modern SiS models trained on such simulated images can
already perform relatively well on real images, their performance can be
further improved by domain adaptation (DA) – and even with unsuper-
vised domain adaptation (UDA) not requiring any target labels. This is
due to the fact that DA allows to bridge the gap caused by the domain
shift between the synthetic and real images. For the aforementioned rea-
sons, sim-to-real adaptation represents one of the leading benchmarks
to assess the effectiveness of domain adaptation for semantic image
segmentation (DASiS).

The aim of our monograph is to overview the research field of SiS.
On the one hand, we propose a literature review of semantic image
segmentation solutions designed in the last two decades – including early
historical methods and more recent deep learning ones, also covering the
recent trend of using transformers with attention mechanism. On the
other hand, we devote a large part of the monograph to survey methods
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designed ad hoc for DASiS. While our work shares some similarities
with some of the previous surveys on this topic, it covers a broader
set of DASiS approaches and departs from these previous attempts
pursuing different directions that are detailed below.

Amongst the existing works surveying SiS methods, we can mention
Thoma (2016) who gives a brief overview of some of the early semantic
segmentation and low-level segmentation methods. Li et al. (2018a) and
Zhou et al. (2018) discuss some of the early deep learning-based solutions
for SiS. A more complete survey on deep SiS models has been proposed
by Minaee et al. (2020), while Zhang et al. (2020a) focus on reviewing
semi- and weakly supervised semantic segmentation models. We cover
most of these methods in Section 1, where we provide a larger spectrum
of the traditional SiS methods in Section 1.1. Then, in Section 1.2,
we organize the deep SiS methods according to their most important
characteristics, such as the type of encoder/decoder, attention or pooling
layers, solutions to reinforcing local and global consistency. In contrast to
the previous surveys, this section also includes the latest SiS models that
use attention mechanisms and transformers as encoder and/or decoder.
One of the core contributions of this section is Table 2.1, which presents
a broad set of deep models proposed in the literature, and summarized
according to the above mentioned characteristics. Finally, in Section 1.3
we review not only semi- and weakly supervised SiS solutions, but also
new trends whose goal is improving semantic segmentation, such as
curriculum learning, incremental learning and self-supervised learning.

In Section 2, we present and categorize a large number of ap-
proaches devised to tackle the DASiS task. Note that previous DA
surveys (Gopalan et al., 2015; Csurka, 2017; Kouw and Loog, 2021;
Zhang and Gao, 2019; Venkateswara and Panchanathan, 2020; Singh
et al., 2020; Csurka, 2020; Wang and Deng, 2018; Wilson and Cook,
2020) address generic domain adaptation approaches that mainly cover
image classification and mention only a few adaptation methods for
SiS. Similarly, in recent surveys on domain generalization (Wang et al.,
2020b; Zhou et al., 2020a), online learning (Hoi et al., 2018) and robot
perception (Garg et al., 2020), several DA solutions are mentioned, but
yet DASiS received only marginal attention here. The most complete
survey – and therefore most similar to the content of our Section 2 –
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is by Toldo et al. (2020a), which also aimed at reviewing the recent
trends and advances developed for DASiS. Nevertheless, we argue that
our survey extends and enriches it in multiple ways. First, our survey is
more recent in such a quickly evolving field as DASiS, so we address an
important set of recent works appeared after their survey. Second, while
we organize the DASiS methods according to how domain alignment is
achieved similarly to (Toldo et al., 2020a) – namely on image, feature or
output level – we complement it with different ways of grouping DASiS
approaches, namely based on their most important characteristics, such
as the backbone used for the segmentation network, the type and levels
of domain alignments, any complementary techniques used and finally
the particularity of each method compared to the others. We report our
schema in Table 2.1, which represents one of the core contributions of
this monograph. Third, we survey a large set of complementary tech-
niques in Section 2.3 that can help boost the adaptation performance,
such as self-training, co-training, self-ensembling and model distillation.

Finally, in Section 2.4 we propose a detailed categorization of some
of the related DA tasks – such as multi-source, multi-target domain
adaptation, domain generalization, source-free adaptation, domain in-
cremental learning, etc. – and survey solutions proposed in the literature
to address them. None of the previous surveys has such a comprehensive
survey on these related DA tasks, especially what concerns semantic
image segmentation.

To complement the above two sections, which represent the core
contributions of our monograph, we further provide in Section 3 a list
of the datasets and benchmarks typically used to evaluate SiS and
DASiS methods, covering the main metrics and discuss different SiS
and DASiS evaluation protocols. Furthermore, in Section 4 we propose
a short overview of the literature for three tasks strongly related to SiS,
namely instance segmentation in Section 4.1, panoptic segmentation
in Section 4.2 and medical image segmentation in Section 4.3.

We hope that our monograph, with its comprehensive survey of the
main trends in the field of semantic image segmentation, will provide
researchers both across academia and in the industry with a solid basis
and background to help them develop new methods and foster new
research directions.



1
Semantic Image Segmentation (SiS)

Semantic image segmentation (SiS) – sometimes referred to as content-
based image segmentation – is a computer vision problem where the task
is to determine to which semantic class each pixel of an image belongs to.
Typically, this problem is approached in a supervised learning fashion,
by relying on a dataset of images annotated at pixel level, and training
with them a machine learning model to perform the task. This task is
inherently more challenging than image classification, where the aim is
to predict a single label for a given image. Furthermore, the task is more
than the extension of image classification to pixel-level classification, as
in contrast to image classification where each image can be considered
independently from the others, in SiS the neighboring pixels are strongly
related with each other and their labeling should be considered together,
tackling the problem as an image partitioning into semantic regions.
Hence, while the models in general indeed try to minimize the pixel-
level cross-entropy loss between the ground-truth (GT) segmentation
map and the predicted segmentation map, additional constraints or
regularizing terms are necessary in general to ensure, for example, local
labeling consistency or to guide segmentation boundary smoothness.1

1For more details on different losses for SiS we refer the reader to Section 1.2.10

7



8 Semantic Image Segmentation (SiS)

The name of the task, semantic image segmentation, reflects the
goal of determining the nature, i.e. semantics, of different parts of an
image. Semantic labels in general refer to things such as “car”, “dog”,
“pedestrian” or stuff such as “vegetation”, “mountain”, “road”, “sky”.
Things and stuff are terms extensively used in the literature, where
the former includes classes associated with countable instances and the
latter indicates classes associated with the layout of a scene. Note that
a related, still different problem is low-level image segmentation (not
addressed in this survey), which consists in an unsupervised partitioning
of an image into coherent regions according more to some low-level
cues, such as color, texture or depth. Another related field is instance
segmentation (discussed in Section 4.1), which differs from semantic
segmentation as the latter treats multiple object instances with the same
semantics as a single entity, while the former treats multiple objects
of the same class as distinct individual objects (or instances). The
extension of instance segmentation to panoptic segmentation, where
stuff is also taken into account, is further discussed in Section 4.2.

The aim of this section is to provide a comprehensive literature
review of SiS methods proposed since the beginning of the field. It
is organized as follows. In Section 1.1 we first provide an overview
of the historical SiS methods preceding the deep learning era. Then,
in Section 1.2, we focus on deep learning-based models proposed for
SiS, following Minaee et al. (2020), and propose to categorize them by
their main principles. In particular, we collect the methods in Table 2.1
detailing their main characteristics, such as the encoder and decoder
used, whether they rely on attention modules, how they tackle the
semantic consistency within regions, on what kind of data the models
were tested on, and what are the main characteristics of each model.

Finally, we conclude this section with Section 1.3 where we dis-
cuss some of the semantic segmentation solutions that depart from the
classical setting, such as exploiting the unlabeled data (Section 1.3.1),
relying on weak or none annotations (Section 1.3.2), exploiting curricu-
lum learning strategies (Section 1.3.3), learning the semantic classes
incrementally (Section 1.3.4) or fine-tuning a self-supervised pre-trained
model (Section 1.3.5). Note that the models proposed in this section
have generally been tested in domain – that is, training and testing
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data come from the same data distribution. The case when training
and testing data come from two different distributions, – i.e. the model
trained on a source domain (e.g. synthetic environment) needs to be
adapted to a new target domain (e.g. real world), – is discussed in detail
in Section 2.

1.1 Historical SiS Methods

Methods preceding the deep learning era mainly focused on three di-
rections to approach the segmentation problem: 1) local appearance of
semantic classes, 2) local consistency of the labeling between locations,
and 3) how to incorporate prior knowledge into the pipeline to improve
the segmentation quality. These three aspects are addressed indepen-
dently in the semantic segmentation pipeline as illustrated in Figure 1.1.
They can also be approached within a unified probabilistic framework
such as a Conditional Random Field (CRF), as described in Section 1.1.2.
The latter methods enable at training time a joint estimation of the
model parameters and therefore ensure at test time a globally consistent
labeling. Yet, they carry a relatively high computational cost. Note that
the three aspects are also addressed by the deep learning models, where
they are jointly learned in an end-to-end manner, together with the
main supervised task, as we will see in Section 1.2.

In what follows we briefly discuss how the above three components
were addressed and combined by the methods proposed before the deep
learning era.

1.1.1 Modeling local appearance

The local appearance can be defined at different levels, including a
representation proposed at every pixel location (He et al., 2004; Kumar
and Hebert, 2005; Schroff et al., 2006; Li et al., 2009), patches on a
regular grid (Verbeek and Triggs, 2007a; Larlus et al., 2010), positions
of interest points (Leibe et al., 2004; Cao and Fei-Fei, 2007; Yang et al.,
2007) or regions obtained through low-level segmentation referred to
as super-pixels (Borenstein and Ullman, 2004; Cao and Fei-Fei, 2007;
Yang et al., 2007). Note that a sparse description in general enables
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Figure 1.1: In the model proposed in Csurka and Perronnin (2011), the local
appearance, global and local consistencies are addressed independently. First, for
patches considered at multiple scale SIFT (Lowe, 2004) and local color statistics are
extracted and transformed into high-level Fisher vector representations (Perronnin
and Dance, 2007) allowing fast and efficient patch scoring. The global consistency is
addressed by an image-level classifier, which is used to filter out improbable classes,
while the local consistency is ensured by low-level segmentation assigning to each
super-pixel the semantic label based on averaged class probabilities. Figure based on
Csurka and Perronnin (2011).

faster processing and still provides excellent accuracy compared to
the dense description. The same method can sometimes consider the
combination of multiple representations such as using interest points
and regions (Cao and Fei-Fei, 2007; Yang et al., 2007) or using dense
sampling and regions (Kumar and Hebert, 2005).

Amongst early local appearance features we can mention raw im-
age representations (Schroff et al., 2006), a combination of Gaussian
filter outputs, colors, and locations computed for each pixel called
textons (Shotton et al., 2009), SIFT (Lowe, 2004), and local color statis-
tics (Clinchant et al., 2007). As mentioned above, the local features are
often computed on image patches extracted either on a (multi-scale)
grid (Verbeek and Triggs, 2007b; Csurka and Perronnin, 2011) or at
detected interest point locations (Cao and Fei-Fei, 2007; Yang et al.,
2007).

These local representations are often clustered into so called visual
words (Csurka et al., 2004; Jurie and Triggs, 2005) and the local image
entity (pixel, patch, super-pixels) is labeled by simply assigning the
corresponding feature to the closest visual word (Schroff et al., 2006) or
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fed into a classifier (Plath et al., 2009). Alternatively, these low-level
local features can also be used to build higher level representations
such as Semantic Texton Forest Shotton et al. (2009), Bag of Visual
Words (Csurka et al., 2004), Fisher Vectors (Perronnin and Dance,
2007), which are fed into a classifier that predicts class labels at patch
level (Csurka and Perronnin, 2011; Ladický et al., 2009), pixel level
(Shotton et al., 2009) or region level (Yang et al., 2007; Gonfaus et al.,
2010; Hu et al., 2012).

Topic models, such as probabilistic Latent Semantic Analysis (Hof-
mann, 2001) and Latent Dirichlet Allocation (Blei et al., 2003) consider
the bag-of-words as a mixture of several topics and represent a region
as a distribution over visual words. Such representations have been
extended to image segmentation by explicitly incorporating spatial
coherency in the model to encourage similar latent topic assignment for
neighboring regions with similar appearance (Cao and Fei-Fei, 2007) or
by combining topic models with Random Fields (Orbanz and Buhmann,
2006; Verbeek and Triggs, 2007a; Larlus et al., 2010).

1.1.2 Reinforcing local and global consistency

To reinforce the segmentation consistency, the local appearance represen-
tation and its context are generally incorporated within a Random Field
(RF) framework, mainly the Markov Random Field (MRF) (Verbeek
and Triggs, 2007a; Gould et al., 2008; Kato and Zerubia, 2012) or the
Conditional Random Field (CRF) (Shotton et al., 2009; He et al., 2004;
Verbeek and Triggs, 2007b). While the MRF is generative in nature,
the CRF directly models the conditional probability of the labels given
the features.

Note that the unary potentials in these RF models can be pix-
els (Shotton et al., 2009), patches (Verbeek and Triggs, 2007b; Plath
et al., 2009; Larlus et al., 2010) or super-pixels (Lucchi et al., 2011;
Lempitsky et al., 2011) represented by a corresponding appearance
feature as described in Section 1.1.1.

In these probabilistic frameworks, label dependencies are modeled by
a random field (MRF or CRF), and an optimal labeling is determined
usually by energy minimization. Prior information can be imposed
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through clique potentials between the nodes in the RF graph (as illus-
trated in Figure 1.2). The most often used edge potentials are the Potts
model (Wu, 1982), which penalizes class transitions between neighboring
nodes, and the contrast-sensitive Potts model (Boykov and Jolly, 2001),
which includes a term reducing the cost of a transition in high contrast
regions likely corresponding to object boundaries.

Figure 1.2: Conditional Random Field (CRF) with different increasingly more
sophisticated edge potentials. From left to right: Potts model (Wu, 1982; Boykov
and Jolly, 2001) penalizing all local nodes with a label different from the global
node; The Robust P N model (Kohli et al., 2009) that adds an extra “free label”
to the Potts model in order to not penalize local nodes; Harmony model (Gonfaus
et al., 2010) allowing different labels to coexist in a power set; Class independent
model (Lucchi et al., 2011) modeling each classes with its own global node to make
the inference more tractable. Figure based on Lucchi et al. (2011).

To enforce region-level consistency, higher order potentials can be
added to the CRF model in order to ensure that all pixels within a
low-level region have the same label (see examples in Figure 1.2). As
such, Kohli et al. (2009) propose the Robust P N model that adds an
extra free label to the Potts model in order not to penalize local nodes.
Krähenbühl and Koltun (2011) propose a fully connected dense CRF
that models the pairwise dependencies between all pairs of pixels with
pairwise edge potentials defined by a linear combination of Gaussian
kernels, making the inference highly efficient.

The associative hierarchical CRF model by Ladický et al. (2009)
incorporates context from multiple quantization levels (pixel, segment,
and segment union/intersection) in a joint optimization framework
using graph cut-based move-making algorithms. The Harmony poten-
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tials (Gonfaus et al., 2010) model global preferences where any possible
combination of class labels can be encoded; this enforces the consis-
tency between local and global label assignments of the nodes. In the
Pylon model (Lempitsky et al., 2011), each image is represented by a
hierarchical segmentation tree, and the resulting energy – combining
unary and boundary terms – is optimized using the graph cut. Plath
et al. (2009) use a CRF-based on an multi-scale pre-segmentation of the
image into patches, which couples local image features with image-level
multi-class SVM to provide the local patch evidences. Instead, Lucchi
et al. (2011) propose to model each class with its own global node to
make the inference more tractable (see Figure 1.2). In the LayoutCRF
model (Winn and Shotton, 2006), the pairwise potentials are asym-
metric and impose local spatial constraints which ensures a consistent
layout whilst allowing to cope with object deformations.

In alternative to the RF framework, segmentation methods often
ensure local consistency by relying on images decomposed into super-
pixels. Such unsupervised partitioning of the image is obtained with
low-level segmentation methods such as a Mean Shift (Comanicu and
Meer, 2002) or hierarchical image segmentation (Arbelaez et al., 2011).
A class label is assigned for each super-pixel either in a post processing
step (Csurka and Perronnin, 2011) (see e.g. Figure 1.1) or by relying
on region descriptors and a model predicting class labels at super-pixel
level (Yang et al., 2007; Pantofaru et al., 2008). The main limitation of
these methods is that there is no possible recovery if a region includes
multiple classes. To overcome this limitation, several works propose to
consider multiple segmentations, exploiting overlapping sets of regions
(Gould et al., 2009; Pantofaru et al., 2008), a hierarchy of regions (Gu
et al., 2009; Hu et al., 2012), or a graph of regions (Chen et al., 2011).

1.1.3 Using prior knowledge

Amongst different types of prior knowledge, the global image classifica-
tion is most often considered – as easy to obtain, – where the global
scale information is used to filter or to improve the estimation at local
scale (Csurka and Perronnin, 2011; Plath et al., 2009; Verbeek and
Triggs, 2007b). Further priors considered for SiS are object shape priors
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used to guide the segmentation process (Kumar et al., 2005; Yang et al.,
2007) or bounding boxes obtained from object detectors (Lempitsky
et al., 2009). Li et al. (2009) employ the user tags provided by Flickr as
an additional cue to infer the presence of an object in the image, while
He et al. (2006) use an environment-specific class distribution prior
to guide the segmentation. Gould et al. (2008) and He et al. (2004)
explicitly model spatial relationships between different classes.

1.2 Deep Learning-based SiS

In this section we describe the main types of deep learning-based SiS
pipelines, grouping the corresponding methods, similarly to (Minaee
et al., 2020), based on their main principles. Concretely, in Section 1.2.1
we present a few works where classical models have been revisited with
deep features, and in Section 1.2.2 we discuss how deep networks were
combined with graphical models. Methods based on Fully Convolutional
Networks are surveyed in Section 1.2.3 and those using decoders or
deconvolutional networks are presented in Section 1.2.4. Several models
using Recurrent Neural Networks are briefly reviewed in Section 1.2.5
and those having pyramidal architectures in Section 1.2.6. Dilated con-
volutions which easily aggregate multi-scale contextual information are
discussed in Section 1.2.7; attention mechanisms exploited in SiS are
addressed in Section 1.2.8. Finally, we end the section with very recent
transformer-based models reviewed in Section 1.2.9. In addition, we
propose Table 1.1, where most deep SiS methods are briefly summa-
rized according to their main characteristics, the type of data they are
evaluated on, as well as the specificity of each method compared to the
others.

1.2.1 Deep features used in classical models

Following the preliminary work of Grangier et al. (2009) who show that
convolutional neural networks (CNNs) fed with raw pixels can be trained
to perform scene parsing with decent accuracy, several methods have
been proposed to replace hand crafted appearance representations (see
Section 1.1.1) with representations obtained from deep convolutional
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networks. For example, Farabet et al. (2012) train a multi-scale CNN to
learn good features for region classification which are used to represent
nodes in a segmentation tree. Instead, Farabet et al. (2013) consider a
deep dense feature extractor that produces class predictions for each
pixel independently from its neighbors and use these predictions as
unary potentials in a CRF graph. They also propose an alternative,
where an image is represented first as a hierarchy of super-pixels and the
average class distribution for each node is computed from the pixel-level
predictions of the network.

Mostajabi et al. (2015) propose a purely feed-forward architecture
for semantic segmentation, where they concatenate the super-pixel rep-
resentations with deep features extracted from a sequence of nested
regions of increasing extent. These context regions are obtained by
”zooming out” from the super-pixels all the way to scene-level resolution.
Hariharan et al. (2015) propose to concatenate features from interme-
diate layers into so called hyper-column representation used as pixel
descriptors for object segmentation.

1.2.2 Graphical models

Inspired by the shallow image segmentation methods that integrate local
and global context (see Section 1.1.2), several works propose to combine
the strengths of CNNs with CRFs by training them jointly in an end-
to-end manner. As such, the model proposed by Chandra and Kokkinos
(2016) relies on Gaussian-CRF modules that collect the unary and
pairwise terms from the network and propose image hypothesis (scores);
these scores are then converted into probabilities using the softmax
function and thresholded to obtain the segmentation. In addition, they
introduce a multi-resolution architecture to couple information across
different scales in a joint optimization framework showing that this
yields systematic improvements.

Schwing and Urtasun (2015) propose to jointly train the parameters
of a CNN used to define the unary potentials as well as the smoothness
terms, taking into account the dependencies between the random vari-
ables. Chen et al. (2017b) treat every pixel as a CRF node and exploit
long-range dependencies using CRF inference to directly optimize a deep
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CNN driven cost function. Teichmann and Cipolla (2019) reformulate
the CRF inference in terms of convolutions; this allows them to improve
the efficiency of the CRF, which is known for being hard to optimize
and slow at inference time.

1.2.3 Fully convolutional networks (FCNs)

The preliminary multi-scale convolutional network developed by Farabet
et al. (2013) learns to produce a fairly accurate segmentation map. Still,
the model needs to act on a multi-scale pyramid of image windows.
Instead, the Fully Convolutional Network (FCN) proposed by Long et al.
(2015a), transforming the fully connected layers into convolution layers,
enables the net to predict directly a dense high resolution output (class
presence heatmaps) from arbitrary-sized inputs. To further improve
the segmentation quality, they propose to obtain such prediction maps
at different levels of the network, where the lower resolution outputs
are upsampled using billinearly initialized deconvolutions and fused
with the coarser but higher resolution feature maps (see illustration
in Figure 1.3).

Figure 1.3: The FCN (Long et al., 2015a) transforms the fully connected layers
of the classification network to produce class presence heatmaps. The model takes
coarse, high layer information at low resolution and upsample it using billinearly
initialized deconvolutions. At each upsampling stage, the prediction maps are refined
by fusing them with coarser but higher resolution feature maps. The model hence
can take an arbitrary size image and produce the same size output, suitable for
spatially dense prediction tasks such as SiS.
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Liu et al. (2016) extend FCN by adding a global context vector
obtained by global pooling of the feature map, showing that it reduces
local confusion. This image-level information is appended to each local
feature and the combined feature map is sent to the subsequent layer
of the network.

The idea of using only fully convolution layers has been largely
adopted as encoder for many SiS models (see Table 1.1).

1.2.4 Encoder-decoder networks

SiS models based on encoder-decoder architectures are composed of
an encoder – where the input image is compressed into a latent-space
representation that captures the underlying semantic information – and
a decoder that generates a predicted output from this latent represen-
tation. In general, there are connections between the corresponding
encoder and decoder layers allowing the spatial information to be used
by the decoder and its upsampling operations (see Figure 1.4). De-
ConvNet (Noh et al., 2015), SegNet (Badrinarayanan et al., 2017),
UNet (Ronneberger et al., 2015), and LinkNet (Chaurasia and Culur-
ciello, 2017) (see Figure 1.4). One such model is DeConvNet (Noh et al.,
2015) where the encoder computes low-dimensional feature represen-
tations via a sequence of pooling and convolution operations, while
the decoder, stacked on top of the encoder, learns to upscale these
low-dimensional features via subsequent unpooling and deconvolution
operations; the maxpooling locations are kept during encoding and
sent to the unpooling operators in the corresponding level. The trained
network, applied to a set of candidate object proposals, aggregates them
to produce the semantic segmentation of the whole image.

Another popular method is SegNet (Badrinarayanan et al., 2017),
where the encoder is similarly composed of consecutive convolutions,
followed by max-pooling sub-sampling layers to increase the spatial
context for pixel labelling. However, instead of deconvolution operations,
trainable convolutional filters are used by the decoder and combined
with the unpooling operations.

Instead of unpooling, in UNet (Ronneberger et al., 2015), the corre-
sponding features maps from the encoder are copied and concatenated
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Figure 1.4: DeConvNet (Noh et al., 2015) is composed of a multi-layer convolutional
network as encoder and a multi-layer deconvolution network as decoder. The latter is
built on the top of the output of the convolutional network, where a series of unpooling,
deconvolution and rectification operations are applied yielding a dense pixel-wise
class prediction map. There are connections between the corresponding encoder
and decoder layers (dashed lines). In the case of DeConvNet (Noh et al., 2015) the
maxpooling locations in the encoder are kept at each level and sent to the unpooling
operators in the corresponding level. UNet and LinkNet extend DeConvNet by skip
connections; in UNet (Ronneberger et al., 2015) the corresponding features maps
from encoder are copied and concatenated to the layers obtained by up-convolutions,
and in LinkNet (Chaurasia and Culurciello, 2017) the input of each encoder layer is
bypassed to the output of the corresponding decoder.

to the layers obtained by up-convolutions, and in LinkNet (Chaurasia
and Culurciello, 2017), the input of each encoder layer is bypassed to
the output of the corresponding decoder layer. In addition, since the
decoder is sharing knowledge learned by the encoder at every layer, the
decoder can use fewer parameters yielding a more efficient network.

Pohlen et al. (2017) propose a Full Resolution Residual Network
(FRRN) that has two processing streams: the residual one which stays
at the full image resolution and a Conv-DeconvNet which undergoes
a sequence of pooling and unpooling operations. The two processing
streams are coupled using full-resolution residual units.

Fu et al. (2017) stack multiple shallow deconvolutional networks to
improve accurate boundary localization which is extended by Fu et al.
(2019b) by redesigning the deconvolutional network with intra-unit and
inter-unit connections – to generate more refined recovery of the spatial
resolution – and by training it with hierarchical supervision.

To maintain high-resolution representations through the encoding
process, Sun et al. (2019b) and Yuan et al. (2020) consider using
HRNet (Sun et al., 2019a) as backbone instead of ResNet or VGG, since
it enables connecting the high-to-low resolution convolution streams in
parallel.
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The GridNet (Fourure et al., 2017) architecture follows a grid pattern
which is composed of multiple paths called streams from the input
image to the output prediction. The streams are interconnected with
convolutional and deconvolutional units, where information from low
and high resolutions can be shared. The two-dimensional grid structure
allows information to flow horizontally in a residual resolution-preserving
way or vertically through down- and up-sampling layers. The authors
show that this architecture generalizes several encoder-decoder networks
such as DeConvNet (Noh et al., 2015), UNet (Ronneberger et al., 2015)
or FRRN (Pohlen et al., 2017) (see Figure 1.5).

Figure 1.5: Fourure et al. (2017) propose the GridNet architecture showing that
it generalizes several encoder-decoder networks such as DeConvNet (Noh et al.,
2015) (blue connections), UNet (Ronneberger et al., 2015) (green connections) or
FRRN (Pohlen et al., 2017) (yellow connections). Figure based on Fourure et al.
(2017).

1.2.5 Recurrent neural networks

Another group of methods consider using recurrent neural network
(RNN) instead of CNNs (Pinheiro and Collobert, 2014; Gatta et al.,
2014); they are the first to show that modeling the long distance depen-
dencies among pixels is beneficial to improve the segmentation quality.
Pinheiro and Collobert (2014) is the first to use recurrent network for
SiS exploiting the fact that RNN allows to consider a large input context
with limited capacity of the model. Their model is trained with differ-
ent input patch sizes (the instances) recurrently to learn increasingly
large contexts for each pixel, whilst ensuring that the larger context is
coherent with the smaller ones. Similarly, Gatta et al. (2014) propose
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unrolled CNNs through different time steps to include semantic feedback
connections. However, in contrast to classical RNNs, the architecture
is replicated without sharing the weights and each network is fed with
the posterior probabilities generated by the previous softmax classifier.
Local and global features are learned in an unsupervised manner and
combined.

Visin et al. (2016) propose the ReSeg structured prediction archi-
tecture which exploits the local generic features extracted by CNN and
the capacity of RNN to retrieve distant dependencies. The model is
a sequence of ReNet layers composed of four RNNs that sweep the
image horizontally and vertically in both directions providing relevant
global information and are followed by upsampling layers to recover
the original image resolution in the final predictions. ReNet layers are
stacked on top of pre-trained convolution layers, benefiting from generic
local features. Zheng et al. (2015) propose RNNs to perform inference
on the CRFs with Gaussian pairwise potentials where a mean-field
iteration is modeled as a stack of CNN layers.

Byeon et al. (2015) introduce two-dimensional Long Short Term
Memory (LSTM) networks, which consist of 4 LSTM blocks scanning all
directions of an image (see Figure 1.6). This allows the model to take into
account complex spatial dependencies between labels, where each local
prediction is implicitly affected by the global contextual information of
the image. Liang et al. (2016) develop the Graph LSTM model, which
considers an arbitrary-shaped super-pixel as a semantically consistent
node of the graph and spatial relations between the super-pixels as its
edges.

1.2.6 Pyramidal architectures

While deep CNNs can capture rich scene information with multi-layer
convolutions and nonlinear pooling, local convolutional features have
limited receptive fields. Different categories may share similar local
textures, e.g. “road” and “sidewalk”, hence it is important to take
into account the context at multiple scales to remove the ambiguity
caused by local regions. Therefore several works have been proposed
to solve this with pyramidal architectures, which furthermore help
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Figure 1.6: In the 2D LSTM model (Byeon et al., 2015), the input image is divided
into non-overlapping windows of size n×n which are are fed into four separate LSTM
memory blocks. The current window of LSTM block is connected to its surrounding
directions and the output of each LSTM block is then passed to the feed-forward
layer where all directions are summed. At the last layer, the outputs of the final
LSTM blocks are summed and sent to the softmax layer. Figure based on Byeon
et al. (2015).

to obtain more precise segmentation boundaries. Amongst them is
the work by Farabet et al. (2013), who transform the input image
through a Laplacian pyramid where different scale inputs are fed into a
pyramid of CNNs and the feature maps obtained from different scales
are then combined. Ghiasi and Fowlkes (2016) develop a multi-resolution
reconstruction architecture based on a Laplacian pyramid that uses
skip connections from higher resolution feature maps and multiplicative
confidence-weighted gating to successively refine segment boundaries
reconstructed from lower-resolution maps.

The main idea behind RefineNet (Lin et al., 2017a) is similarly to
refine coarse resolution predictions with finer-grained ones in a recur-
sive manner. This is achieved by short-range and long-range residual
connections with identity mappings which enable effective end-to-end
training of the whole system. Furthermore, a chained residual pooling
allows the network to capture background context from large image
regions.

The pyramid scene parsing network (PSPNet) (Zhao et al., 2017)
extends Spatial Pyramid Pooling (SPP), proposed by He et al. (2014),
to semantic segmentation. The pyramid parsing module is applied to
harvest different sub-region representations, followed by up-sampling
and concatenation layers to form the final feature representation, which
– carrying both local and global context information – is fed into a
convolution layer to get the final per-pixel prediction (see Figure 1.7).
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Figure 1.7: The PSPNet (Zhao et al., 2017) gets the feature map of the last
convolution layer of the encoder on which a pyramid parsing module is applied
to harvest different sub-region representations. These representations are further
upsampled and concatenated to the initial feature map to form the final feature
representation. In this way local and global clues are fused together to make the
final prediction more reliable. Figure based on Zhao et al. (2017).

Xiao et al. (2018) propose a Unified Perceptual Parsing framework
(UperNet) which combines the Feature Pyramid Network (FPN) (Lin
et al., 2017b) with a Pyramid Pooling Module (PPM) (Zhao et al., 2017).
The model is trained in a multi-task manner with image-level (scenes,
textures) and pixel-level (objects, object parts, materials) annotations.

1.2.7 Dilated convolutions

Dilated convolution-based networks (Chen et al., 2017b; Yu and Koltun,
2015) aggregate multi-scale contextual information where, instead of
sub-sampling, dilated convolutions are used as they support exponential
expansion of the receptive field without loss of resolution nor coverage.

Many recent SiS methods adopt the dilated convolutions. For exam-
ple, Paszke et al. (2016) extend SegNet (Badrinarayanan et al., 2017)
with dilated convolutions and make it asymmetric, using a large en-
coder and a small decoder. The encoder-decoder network by Wang et al.
(2018a) uses hybrid dilated convolutions in the encoding phase and
dense upsampling convolutions to generate pixel-level prediction. Chen
et al. (2017b) propose to perform Spatial Pyramid Pooling with dilated
convolutions where parallel atrous convolution layers with different
rates capture multi-scale information. Yang et al. (2018) densely con-
nect ASSP layers where the output of each dilated convolution layer is
concatenated with input feature map and then fed into the next dilated
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layer. He et al. (2019) introduce multi-scale contextual representations
with multiple adaptive context modules, where each of such modules
uses a global representation to guide the local affinity estimation for
each sub-region. The model then concatenates context vectors from
different scales with the original features for predicting the semantic
labels of the input pixels.

The architecture of the popular DeepLab family (Chen et al., 2017b;
Chen et al., 2017c) combines several ingredients including dilated con-
volution to address the decreasing resolution, ASPP to capture objects
as well as image context at multiple scales, and CRFs to improve the
segmentation boundaries (see Figure 1.8). Chen et al. (2018b) use the
DeepLabv3 (Chen et al., 2017c) framework as encoder in an encoder-
decoder architecture.

Figure 1.8: The DeepLab model (Chen et al., 2017b) relies on a deep CNN with
atrous convolutions to reduce the degree of signal downsampling and a bilinear
interpolation stage that enlarges the feature maps to the original image resolution.
A fully connected CRF is finally applied to refine the segmentation result and to
better capture the object boundaries. Figure based on Chen et al. (2017b).

1.2.8 Attention mechanism

Attention and self-attention mechanism is widely used for many visual
tasks. Amongst the methods for SiS, we can mention the work of Chen et
al. (2016) who propose a simple attention mechanism that weighs multi-
scale features at each pixel location. These spatial attention weights
reflect the importance of a feature at a given position and scale.

Li et al. (2018b) propose a Pyramid Attention Network (PAN)
where Feature Pyramid Attention modules are used to embed context
features from different scales and Global Attention Upsample modules
on each decoder layer to provide global context as guidance during
global average pooling to select category localization details.
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Fu et al. (2019a) introduce Dual Attention Networks (DANs) to
adaptively integrate local features with their global dependencies. This
is achieved by two self-attention mechanisms, the Position Attention
Module capturing the spatial dependencies between any two positions
of the feature maps, and the Channel Attention Module that exploits
dependencies between channel maps. The outputs of the two attention
modules are fused to enhance the feature representations (see illustration
in Figure 1.9).

Figure 1.9: The Dual Attention Networks (Fu et al., 2019a) aggregates the output
of the Position Attention Module that aims at capturing the spatial dependencies
between any two positions of the feature maps with the channel attention module
exploiting the inter-dependencies between channel maps. Specifically, the outputs of
the two attention modules are transformed by a convolution layer before fused by an
element-wise sum followed by a convolution layer to generate the final prediction
maps. Figure based on Fu et al. (2019a).

To aggregate long-range contextual information in a flexible and
adaptive manner, Zhao et al. (2018c) propose the Point-wise Spatial
Attention Network (PSANet) where each position in the feature map is
connected with all the other ones learning self-adaptive attention masks
which are sensitive to location and category information. The contextual
information collected with a bi-directional information propagation path
is fused with local features to form the final representation of complex
scenes.

Wang et al. (2020a) propose an axial-attention block (AAL) which
factorizes 2D self-attention into two 1D ones. It consists of two axial-
attention layers operating along height-axis and width-axis sequentially.
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1.2.9 Transformer-based models

Transformer-based models belong to the most recent networks that rely
on self-attention, aimed to capture global image context and to address
the segmentation ambiguity at the level of image patches. Amongst
the first, Strudel et al. (2021) extend the recent Vision Transformer
(ViT) model (Dosovitskiy et al., 2021) to handle semantic segmentation
problems. In contrast to convolution-based approaches, ViT allows to
model global context starting from the first layer and throughout all
the network. The model relies on the output embeddings corresponding
to image patches and obtains class labels from these embeddings with
a point-wise linear decoder or a mask transformer decoder (see Fig-
ure 1.10).

Figure 1.10: The Segmenter model (Strudel et al., 2021) projects image patches to
a sequence of embeddings encoded with the Vision Transformer (ViT) (Dosovitskiy
et al., 2021) and the Mask Transformer takes the output of the encoder and semantic
class embeddings to predict segmentation class masks for each image patch; these
masks are then combined to get the full semantic prediction map. Figure based on
Strudel et al. (2021).

The pyramid Vision Transformer (PVT) (Wang et al., 2021c) is an-
other extension of ViT where incorporating the pyramid structure from
CNNs allows the model to better handle dense predictions. Ranftl et al.
(2021) introduce a transformer for dense prediction, including depth
estimation and semantic segmentation. The model takes region-wise
output of convolutional networks augmented with positional embed-
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ding, assembles tokens from various stages of the ViT into image-like
representations at various resolutions, and progressively combines them
into full-resolution predictions using a convolutional decoder.

Xie et al. (2021) combine hierarchical transformer-based encoders to
extract coarse and fine features with lightweight multi-layer perceptron
decoders to aggregate information from different layers, thus combining
both local and global attentions to render a more powerful representation.
Guo et al. (2021a) also follow the hierarchical approach; they use Feature
Pyramid Network (FPN) to generate multi-scale feature maps, which
are then fed into a transformer – to acquire global dependencies and
to predict per-instance category – and into a multi-level upsampling
module to dynamically generate segmentation masks guided by the
transformer output.

Liu et al. (2021d) introduce the Swin Transformer for constructing
hierarchical feature maps and promote it as a general-purpose back-
bone for major downstream vision tasks. The key idea is a hierarchy
of shifted window based multi-headed self-attention layers, where each
layer contains a Swin Attention Block (SwT) followed by a SeMask
Attention Blocks (SAB) to capture the semantic context in the en-
coder network. The Semantic-FPN like decoder ensures the connections
between windows of consecutive layers.

Jain et al. (2021) incorporate semantic information into the encoder
with the help of a semantic attention operation. This is achieved by
adding Semantic Layers composed of SeMask Attention Blocks after the
Swin Transformer Layer to capture the semantic context in a hierarchical
encoder network. At each stage, the semantic maps, decoded from the
Semantic Layers, are aggregated and passed through a weighted cross
entropy loss to supervise the semantic context.

Chu et al. (2021) propose an architecture with two Twin Trans-
formers; the first one, called Twins-PCPVT, replaces the positional
encoding in PVT by positional encodings generated by a position gen-
erator. The second one, called Twins-SVT, interleaves locally-grouped
attention (LGA) – capturing the fine-grained and short-distance infor-
mation – with global sub-sampled attention (GSA), which deals with
the long-distance and global information.
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Ali et al. (2021) propose a novel way of computing self-attention,
where attention matrices are computed over feature channels rather
than on input tokens. The resulting Cross-covariance Image Transformer
(XCiT) model, hence, has the intriguing property of scaling linearly
with respect to the input size – in terms of computation and memory.
This allows training on higher-resolution images and/or smaller patches.

1.2.10 SiS specific losses

The most common loss used in deep SiS methods is the standard pixel-
wise cross-entropy loss, where the aim is to minimize the difference
between the class predictions and the ground-truth annotations for all
pixels:

Lce = −E(X ,Y)

∑
h,w

y(h,w) · log(p(F (x(h,w))))

 ,

where F is the segmentation model, p(F (x(h,w))) is a vector of class
probabilities at pixel x(h,w) and y(h,w) is a one-hot vector with 1 at the
position of the pixel’s true class and 0 elsewhere.

As SiS data is compiled in real world environments, most of them
are often imbalanced, with dominant portions of data assigned to a few
majority classes while the rest belong to minority classes, thus forming
under-represented categories. As a consequence, deep SiS methods
trained with the conventional cross-entropy loss tend to be biased
towards the majority classes during inference (Rahman and Wang, 2017;
Buló et al., 2017).

To mitigate this class-imbalance problem, SiS datasets can un-
dergo the resampling step, by over-sampling minority classes and/or
under-sampling majority classes. However, such approaches change the
underlying data distributions and may result in sub-optimal exploitation
of available data, increasing the risk of over-fitting when repeatedly
visiting the same samples from minority classes.

An alternative to resampling is the cost-sensitive learning procedure,
which introduces class-specific weights, often derived from the original
data statistics. They use statically-defined cost matrices (Caesar et al.,
2015; Mostajabi et al., 2015) or introduce additional parameter learning
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steps (Khan et al., 2018). Due to the spatial arrangement and strong
correlations of classes between adjacent pixels, cost-sensitive learning
techniques outperform resampling methods. However, the increasing
complexity and a large number of under-represented (minority) classes
in the recent SiS datasets make cumbersome the accurate estimation of
the cost matrices.

Some approaches to the class-imbalance problem take into account
the SiS specificity. One such method introduces a generalized max-
pooling operator acting at the pixel-loss level (Buló et al., 2017). It
provides an adaptive re-weighting of contributions of each pixel, based
on the loss they actually exhibit. Image pixels that incur higher losses
during training are weighted more than pixels with a lower loss, thus
indirectly compensating potential inter-class and intra-class imbalances
within the dataset.

Another approach is to revise the standard cross-entropy loss,
which optimizes the network for overall accuracy, and to address the
intersection-over-union (IoU) measure instead. As described in Sec-
tion 3.1.1, the IoU measure gives the similarity between the prediction
and the ground-truth for every segment present in the image; it is de-
fined as the intersection over the union of the labeled segments, averaged
over all classes. Methods that optimize the IoU measure proceed either
by direct optimization (Rahman and Wang, 2017) or by deploying the
convex surrogates of sub-modular losses (Berman et al., 2018).

Another group of SiS specific losses is driven by the observation
that segmentation prediction errors are more likely to occur near the
segmentation boundaries. Borse et al. (2021) introduce a boundary
distance-based measure and include it into the standard segmentation
loss. They use an inverse transformation network to model the distance
between boundary maps, which can learn the degree of parametric
transformations between local spatial regions.

1.3 Beyond Classical SiS

In this section, we present SiS approaches that go beyond the classical
methods described above. A substantial part is focused on solutions that
address the shortage of pixel-wise image annotation: in Section 1.3.1
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we detail methods which exploit unlabeled samples; in Section 1.3.2
we describe approaches that rely on weak labels such as image-level
annotations or bounding boxes, instead of ground-truth segmentation
maps. Furthermore, Section 1.3.3 considers the case when the training
is decomposed into easier-to-harder tasks learned sequentially; Sec-
tion 1.3.4 reviews methods where the model’s underlying knowledge is
incrementally extended to new classes; finally, Section 1.3.5 focuses on
the effects of self-supervised visual pre-training on SiS.

1.3.1 Semi-supervised SiS

In conventional semi-supervised learning (SSL), to overcome the burden
of costly annotations, the model makes usage of a small number of
labeled images and a large number of unlabeled ones. In the case of SiS,
most semi-supervised methods exploit a small set of labeled images with
pixel-level annotations and s set of images with image-level annotation,
like image class labels or object bounding boxes. Below we present
semi-supervised extension of SiS models presented in Section 1.2.

Amongst the early semi-supervised SiS works, we first mention Hong
et al. (2015), who propose an encoder-decoder framework where image-
level annotations are used to train the encoder and pixel-wise ones are
used to train the decoder. Oquab et al. (2015) rely on FCN and introduce
a max-pooling layer that hypothesizes the possible location of an object
in the image. Pathak et al. (2015) propose a constrained CNN where a
set of linear constraints are optimized to enforce the model’s output to
follow a distribution over latent “ground-truth” labels as closely as pos-
sible. Papandreou et al. (2015) develop an Expectation-Maximization
(EM) method for training CNN semantic segmentation models under
weakly and semi-supervised settings. The algorithm alternates between
estimating the latent pixel labels, subject to the weak annotation con-
straints, and optimizing the CNN parameters using stochastic gradient
descent (SGD). Hong et al. (2016) combine the encoder-decoder archi-
tecture with an attention model and exploit auxiliary segmentation
maps available for different categories together with the image-level
class labels.
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Another principle of semi-supervised learning, consistency regular-
ization by data augmentation, has been also successfully applied to
SiS (French et al., 2019; French et al., 2020; Ouali et al., 2020; Luo and
Yang, 2020; Olsson et al., 2021; Chen et al., 2021b; Yuan et al., 2021a)
and extended by Lai et al. (2021) towards a directional context-aware
consistency between pixels under different environments.

To further improve the consistency regularization methods, con-
trastive learning is used 1) by Zhou et al. (2021) to decrease inter-class
feature discrepancy of and increase inter-class feature compactness
across the dataset, 2) by Zhong et al. (2021) to simultaneously enforce
the consistency in the label space and the contrastive property in the
feature space, and 3) by Alonso et al. (2021) to align class-wise and
per-pixel features from both labeled and unlabeled data stored in a
memory bank.

Yang et al. (2022) show that re-training by injecting strong data
augmentations on unlabeled images allows the construction of strong
baselines, but such strong augmentations might yield incorrect pseudo
labels. To avoid the potential performance degradation incurred by
incorrect pseudo labels, they perform selective re-training via prioritizing
reliable unlabeled images based on holistic prediction-level stability in
the entire training course.

He et al. (2021c) observe that semi-supervised SiS methods in
the wild severely suffer from the long-tailed class distribution and
propose a distribution alignment and random sampling method to
produce unbiased pseudo labels that match the true class distribution
estimated from the labeled data. Similarly, to cope with long-tailed
label distribution, Hu et al. (2021) propose an adaptive equalization
learning framework that adaptively balances the training of well and
badly performed categories, with a confidence bank to dynamically
track category-wise performance during training.

Finally, several methods use Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) to train a discriminator able to dis-
tinguish between confidence maps from labeled and unlabeled data
predictions (Hung et al., 2018), to refine low-level errors in the pre-
dictions through a discriminator that classifies between generated and
ground-truth segmentation maps (Mittal et al., 2021), or to generate
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fake visual data forcing the discriminator to learn better features (Souly
et al., 2017).

Learning from partially labeled images, where some regions are
labeled and others not, is a particular case of semi-supervised segmen-
tation (Verbeek and Triggs, 2007b; He and Zemel, 2009).

1.3.2 Weakly-supervised SiS

In contrast to semi-supervised learning, weakly-supervised SiS (Boren-
stein and Ullman, 2004) relies only on weak annotations such as image
captions, bounding box or scribble annotations (see example in Fig-
ure 1.11).

Figure 1.11: Weakly-supervised SiS aims at using either the image-level or the
bounding box annotations as supervision to learn a pixel-level image segmentation
(Image courtesy of Xinggang Wang).

Early methods using only image-level annotations in general rely on
multiple instance learning where each image is viewed as a bag of patches
or super-pixels, and the final prediction is accomplished by aggregation
of the class predictions on these patches or super-pixels (Galleguillos
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et al., 2008; Vezhnevets and Buhmann, 2010). In contrast, CNN based
weakly-supervised SiS models exploit the observation that CNNs have
remarkable localization ability despite being trained on image-level
labels (Zhou et al., 2016). These Classification Activation Maps (CAM)
allow the selection of discriminative regions for each semantic class that
can be used as pixel-level supervision for segmentation networks.

To improve such initial CAMs, AffinityNet (Ahn and Kwak, 2018)
learns from data how to propagate local activations by performing
a random walk to the entire object area, predicting semantic affinity
between a pair of adjacent image coordinates. The seed-expand-constrain
(SEC) model (Kolesnikov and Lampert, 2016) seeds weak localization
cues, expands them with image-level class predictions and constrains
with a CRF the segmentation to coincide with object boundaries. A
similar framework is used by Huang et al. (2018b), except that the
region expansion to cover the whole objects is done with the Seeded
Region Growing algorithm (Adams and Bischof, 1994). The method
was extended by Lee et al. (2019b) where, instead of CAM, they rely on
Grad-CAM (Selvaraju et al., 2017) to generate and combine a variety of
localization maps obtained with random combinations of hidden units.
Redondo-Cabrera et al. (2018) combine two Siamese CAM modules to
get activation masks that cover full objects and a segmenter network
which learns to segment the images according to these activation maps.

Roy and Todorovic (2017) propose to train a CRF-RNN (Zheng
et al., 2015) where, for each object class, bottom-up segmentation maps
– obtained from the coarse heatmaps – are combined with top-down
attention maps and, to improve the object boundaries, refined in the
CRF-RNN over iterations. Wang et al. (2018b) mine common object
features from the initial rough localizations and expand object regions
with the mined features. To supplement non-discriminative regions,
saliency maps are then considered to refine the object regions.

Kwak et al. (2017) propose a Super-pixel Pooling Network, which
utilizes super-pixel segmentation as a pooling layout to reflect low-level
image structure, and use them within deCoupledNet (Hong et al., 2015)
to learn semantic segmentation. The WILDCAT model (Durand et al.,
2017) is based on FCN, where all regions are encoded into multiple class
modalities with a multi-map transfer layer, and pooled separately for
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each class to obtain class-specific heatmaps. Sun et al. (2020a) propose
two complementary neural co-attention models to capture the shared
and unshared objects in paired training images.

Several methods consider adding a separate localization branch that
performs the object detection and thus helps adjust the output of the
segmentation branch. In this spirit, Qi et al. (2016) select positive and
negative proposals from the predicted segmentation maps for training
the object localization branch and uses an aggregated proposal to build
pseudo labeled segmentation to train the segmentation branch.

Another group of weakly-supervised SiS methods considers that
the object bounding boxes in an image are available and obtained
either manually, as much less costly than pixel-level annotation, or
automatically by pretrained object detectors such as R-CNNs (Girshick
et al., 2014). As such, Xia et al. (2013) introduce a simple voting
scheme to estimate the object’s shape in each bounding box using a
subsequent graph-cut-based figure-ground segmentation. Then, they
aggregate the segmentation results in the bounding boxes to obtain the
final segmentation result.

Dai et al. (2015) iterate between 1) automatically generating segmen-
tation masks, and 2) training an FCN segmentation network under the
supervision of these approximate masks. The segmentation masks are
obtained with multi-scale combinatorial grouping (MCG) (Pont-Tuset
et al., 2016) of unsupervised region proposals (Arbelaez et al., 2011).
A similar approach has been proposed by Khoreva et al. (2017) who
combine MCG with a modified GrabCut (Rother et al., 2004) to train a
DeepLab model. Ji and Veksler (2021) train a per-class CNN using the
bounding box annotations to learn the object appearance and to seg-
ment these bounding boxes into object-class versus background labels.
These bounding box segments are then combined to get pseudo-labeled
image segmentations which can be used to train a DeepLab model.

Instead, Song et al. (2019) train an FCN model with a box-driven
class-wise masking model to generate class-aware masks, and rely on the
mean filling rates of each class as prior cues. Kulharia et al. (2020) learn
pixel embeddings to simultaneously optimize high intra-class feature
affinity and increasing discrimination between features across different
classes. The model uses per-class attention maps that saliently guides
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the per-pixel cross entropy loss to focus on foreground pixels and to
refine the segmentation boundaries.

More recent methods rely on the effectiveness of transformer net-
works (see also Section 1.2.9) to generate high-quality localization for
different semantic classes (class aware CAMs) that can be used to gen-
erate pseudo labels for supervising the segmentation network. However,
as discussed by Gao et al. (2021) the attention maps of visual trans-
formers are in general semantic-agnostic (not distinguishable to object
classes) and therefore are not competent to semantic-aware localization.
They propose instead the Token Semantic Coupled Attention Map, that
relies on a semantic coupling module which combines the semantic-
aware tokens with the semantic-agnostic attention map. Similarly, Xu
et al. (2022) exploit class-specific transformer attentions and develop
an effective framework to learn class-specific localization maps from the
class-to-patch attention of different class tokens. Instead, Ru et al. (2022)
propose an Affinity from Attention module to learn semantic affinity
from the multi-head self-attention and a Pixel-Adaptive Refinement of
the initial CAM based pseudo labeling via a random walk process.

Amongst other types of weak annotations, we can mention scribble
supervision (Lin et al., 2016; Vernaza and Chandraker, 2017; Tang
et al., 2018) and the even more constrained point supervision (Bearman
et al., 2016), where a single pixel from each class is manually annotated
in every image. Xu et al. (2015) design a unified framework to handle
different types of weak supervision (image-level, bounding boxes and
scribbles), formulating the problem as a max margin clustering, where
supervision comes as additional constraints in the assignments of pixels
to class labels.

Crawling the web is another source of weak image supervision. Jin
et al. (2017) use images with simple background – crawled from the
web – to train shallow CNNs to predict class-specific segmentation
masks, which then are assembled into one deep CNN for end-to-end
training. Shen et al. (2017) use a large scale co-segmentation framework
to learn an initial dilated FCN segmentation model which is refined
using pseudo-labeled masks and image-level labels of webly crawled
images.
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Hong et al. (2017) propose to crawl the web for video sequences
and to exploit relevant spatio-temporal volumes within the retrieved
videos. In the method proposed by Fan et al. (2018), images are fed
into a salient instance detector to get proxy ground-truth data and to
train DeepLab for segmentation, and respectively, Mask R-CNN (He
et al., 2017) for instance segmentation. Shen et al. (2018) rely on two
SEC (Seed-Expand-Constrain) models (Kolesnikov and Lampert, 2016)
where an initial SEC model – trained on weakly labeled target data
– is used to filter images from the web, a second SEC model learns
from these weakly labeled images. Note that many weakly supervised
methods rely on Grab-Cut (Rother et al., 2004) to improve bounding
box binary segmentations, and on CRFs (Section 1.1.2) to refine the
final segmentations.

1.3.3 Curriculum learning based SiS

Curriculum learning (Bengio et al., 2009) refers to the practice where
the training process first approaches easier tasks and then progressively
solve the harder tasks. Soviany et al. (2021) classify the curriculum
learning methods into data-level and model-level curriculum learning,
where the former group ranks the training samples/tasks from easy
to hard and a special module selects which examples/tasks should
be considered at a given training step, while the latter group starts
with a simpler model and increases progressively the model capacity.
Curriculum based SiS methods belong in general to the former group.

In this setup, Kumar et al. (2011) propose to use self-paced learning
(SPL) algorithm for object segmentation which chooses a set of easy
images at each iteration to update the model. Zang et al. (2017) incorpo-
rate the SPL into a fine-tuning process for object segmentation in videos.
The model learns over iterations from easy to complex samples in a
self-paced fashion thus allowing the model to cope with data ambiguity
and complex scenarios.

Feng et al. (2020) propose an easy-to-hard curriculum self-training
approach for semi-supervised SiS where the number of confident pseudo-
labels selected from each class is progressively increased where more
difficult (lower confidence) samples are added at later phases. Jesson
et al. (2017) combine curriculum learning with hard negative mining for
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lung nodules segmentation where the model initially learns how to distin-
guish nodules from their immediate surroundings and then continuously
increases the proportion of difficult-to-classify global context.

1.3.4 Class-incremental learning for SiS

Class-incremental learning is a branch of continual learning where the
goal is to extend the underlying knowledge of a model to new classes. In
general, the assumption is to have a model trained on an initial class-set
which at different stages is fine-tuned on different new data, where
images contain annotation for one or more new classes (see Figure 1.12).
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Figure 1.12: Class-incremental learning for SiS. In standard semantic segmentation,
models are trained by relying on datasets where each image is annotated with a mask
covering all the classes of interest (top). Instead, in class-incremental learning the
goal is to extend the underlying knowledge of a model in a sequence of steps, where
at each step only one/a few classes are annotated – and the rest is “background”.
In the example in (middle), the model is extended with the classes “person”, “car”
and “sidewalk” in three different steps. After each stage, the model can predict more
classes (bottom).

The class-incremental learning problem has a long history in image
classification; yet, this problem has been only recently addressed in
the SIS context (Cermelli et al., 2020; Michieli and Zanuttigh, 2021;
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Douillard et al., 2021; Maracani et al., 2021; Cha et al., 2021). Most
works focus on the scenario where the original dataset on which the
model was trained is not available, and propose to fine-tune the model
on samples available for the current new class (Cermelli et al., 2020;
Michieli and Zanuttigh, 2021; Douillard et al., 2021; Maracani et al.,
2021) – without storing samples from the new classes over time. This
is a realistic scenario under the assumption that the model has been
trained by a third-party and therefore one does not have access to the
original training set or the access is prohibited by the rights to use the
original training samples for copyright issues. Recently, in contrast to
the above methods, Cha et al. (2021) have proposed a memory-based
approach to class-incremental SiS.

In class-incremental learning – and in continual learning in general –
a major challenge that the models need to face is to avoid catastrophic
forgetting. While learning on new samples – where only the new classes
are annotated (and the rest of the image is considered as background) –
the model may overfit on them and the performance on the previous
ones may decrease. In the context of SiS, this is typically referred to
as background shift (Cermelli et al., 2020), given that pixel annotation
from previously learned classes are in general annotated as “background”
in the new samples (see Figure 1.12).

Cermelli et al. (2020) propose to tackle the background shift via
distillation, in order to avoid forgetting previously learned categories.
In addition, they propose an initialization strategy, devised ad hoc,
to mitigate the vulnerability of SiS class-incremental learners to the
background shift issue. Douillard et al. (2021) mitigate the catastrophic
forgetting by generating pseudo-labels for old classes where the con-
fidence of the pseudo ground-truth is weighed via its entropy. They
further rely on a distillation loss that preserves short- and long-distance
relationships between different elements in the scene.

Instead, Maracani et al. (2021) propose two strategies to recreate
data that comprise the old classes; the first one relies on GANs and the
second exploits images retrieved from the web. Cermelli et al. (2022)
propose a class-incremental learning pipeline for SiS where new classes
are learned by relying on global image-level labels instead of pixel-level
annotations, hence related to weekly supervised SiS (see Section 1.3.2).
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Differently from previous approaches, Cha et al. (2021) consider
a memory bank in which a few hundred past samples are stored to
mitigate forgetting. Furthermore, they propose to model the “unknown”
classes other than the “background” one, which further helps avoiding
forgetting and preparing the model to learn future classes.

Finally, Cermelli et al. (2021) introduce a new task called Incremental
Few-Shot Segmentation (iFSS), where the goal is class-incremental
learning by relying on few samples for each new class. They propose
a method that can learn from only a few samples while at the same
time avoiding catastrophic forgetting. This is done by relying on a
prototype-based distillation and on batch renormalization (Ioffe, 2021)
to handle non-iid data.

1.3.5 Self-supervised SiS

Under the shortage of human annotations, self-supervised learning rep-
resents another alternative to learn effective visual representations. The
idea is to devise an auxiliary task, such as rotation prediction (Gidaris
et al., 2018), colorization (Zhang et al., 2016a), or contrastive learn-
ing (Chen et al., 2020b), and to train a model for this task instead of a
supervised one.

Zhan et al. (2017) are the first to apply self-supervised learning in
the SiS context; they propose Mix-and-Match, where in the mix stage
sparsely sampled patches are mixed, and in the match stage a class-wise
connected graph is used to derive a strong triplet-based discriminative
loss for fine-tuning the network.

Most recently, motivated by the success of BERT (Devlin et al., 2019)
in NLP and by the introduction of Vision Transformers (ViT) (Dosovit-
skiy et al., 2021), a variety of masked image models for self-supervised
pre-training has been proposed. Aiming to reconstruct masked pixels
(El-Nouby et al., 2021; He et al., 2022; Xie et al., 2022b), discrete
tokens (Bao et al., 2022; Zhou et al., 2022) or deep features (Baevski
et al., 2022; Wei et al., 2021), these methods have demonstrated the
ability to scale to large datasets and models and achieve state-of-the-art
results on various downstream tasks, including SiS. In particular, the
masked autoencoder (MAE) (He et al., 2022) accelerates pre-training by
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using an asymmetric architecture that consists of a large encoder that
operates only on unmasked patches followed by a lightweight decoder
that reconstructs the masked patches from the latent representation
and mask tokens. MultiMAE (Bachmann et al., 2022) leverages the
efficiency of the MAE approach and extends it to multi-modal and
multitask settings. Rather than masking input tokens randomly, the
Masked Self-Supervised Transformer model (MST) (Li et al., 2021c)
proposes to rely on the attention maps produced by a teacher network,
to dynamically mask low response regions of the input, and a student
network is then trained to reconstruct it.

Instead, Fang et al. (2022) propose the Corrupted Image Modeling
(CIM) for self-supervised visual pre-training. CIM uses an auxiliary
generator to corrupt the input image where some patches are randomly
selected and replaced with plausible alternatives. Given such a corrupted
image, an enhancer network learns to either recover all the original
image pixels, and to predict whether a visual token is replaced by a
generator sample or not. After pre-training, the enhancer can be used
as a high-capacity visual encoder that achieves compelling results in
image classification and semantic segmentation.

The model fine-tuning in self-supervised SiS makes a transition
towards the domain adaptation that we present in detail in the next sec-
tion. We consider both fine-tuning and domain adaptation as instances
of transfer learning. Fine-tuning uses the pre-trained models to initial-
ize the target model parameters and update these parameters during
training. In general, it requires labeled data from the target domain and
does not use data from the source domain. Also, the target task is often
different from the source task. Instead, domain adaptation is the pro-
cess of adapting model(s) trained on source domain(s), by transferring
information to improve model performance on the target domain(s). In
general, labels are not available in the target set but source and target
are associated with the same task. However, note that – as we will see
in Section 2.4 – most recent DA models go beyond classical DA, thus
making the distinction between the two approaches more subtle.



2
Domain Adaptation for SiS (DASiS)

The success of deep learning methods for SiS discussed in Section 1.2
typically depends on the availability of large amounts of annotated
training data. Manual annotation of images with pixel-wise semantic
labels is an extremely tedious and time consuming process. Progress in
computer graphics and modern high-level generic graphics platforms,
such as game engines, enable the generation of photo-realistic virtual
worlds with diverse, realistic, and physically plausible events and ac-
tions. The computer vision and machine learning communities realized
that such tools can be used to generate datasets for training deep
learning models (Richter et al., 2016). Indeed, such synthetic rendering
pipelines can produce a virtually unlimited amount of labeled data,
leading to good performance when deploying models on real data, due
to constantly increasing photorealism of the rendered datasets. Further-
more, it becomes easy to diversify data generation; for example, when
generating scenes that simulate driving conditions, one can simulate
seasonal, weather, daylight or architectural style changes, making such
data generation pipeline suitable to support the design and training of
computer vision models for diverse tasks, such as SiS.

42
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While some SiS models trained on simulated images can already
perform relatively well on real images, their performance can be further
improved by domain adaptation (DA) – and in particular unsupervised
domain adaptation (UDA) – by bridging the gap caused by the domain
shift between the synthetic and real images. For the aforementioned
reasons, sim-to-real adaptation represents one of the leading benchmarks
to assess the effectiveness of domain adaptation for semantic image
segmentation.

The main goal of DASiS is to ensure that SiS models trained on syn-
thetic images perform well on real target data, by leveraging annotated
synthetic and non-annotated real data. A classical DASiS framework re-
lies on either SYNTHIA (Ros et al., 2016) or GTA (Richter et al., 2016)
dataset as a source, and the real-world Cityscapes (Cordts et al., 2016)
dataset as a target. Some known exceptions include domain adaptation
between medical images (Bermúdez-Chacón et al., 2018; Perone et al.,
2019), aerial images (Lee et al., 2021), weather and seasonal condition
changes of outdoor real images (Wulfmeier et al., 2017), and adaptation
between different Field of View (FoV) images (Gu et al., 2021).

Early DASiS methods have been directly inspired by adaptation
methods originally designed for image classification (Csurka, 2020; Wang
and Deng, 2018). However, SiS is a more complex task as predictions
are carried out at the pixel level, where neighbouring pixels are strongly
related (as discussed in Section 1). DA methods for image classification
commonly embed entire images in some latent space and then align
source and target data distributions. Directly applying such a strategy
to SiS models is sub-optimal, due to the higher dimensionality and
complexity of the output space. To address this complexity, most DASiS
methods take into account the spatial structure and the local image
context, act at multiple levels of the segmentation pipeline and often
combine multiple techniques.

Therefore, to overview these methods, we step away from grouping
the DA methods into big clearly distinguishable families, as it is done
in recent surveys on image classification (Csurka, 2020; Wang and
Deng, 2018). We instead identify a number of critical characteristics of
existing DASiS pipelines and categorize the most prominent methods
according to them. From this point of view, Table 2.1 is one of our major
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contributions. It is detailed in Section 2.2, where we describe the different
domain alignment techniques that are applied at input image, feature
and output prediction levels. In Section 2.3, we describe complementary
machine learning strategies that can empower domain alignment and
improve the performance of a segmentation model on target images.
Before presenting these different methods, in the next section we first
formalize the UDA problem and list the most popular domain alignment
losses optimized by a large majority of DA approaches.

2.1 Brief Introduction into UDA

Let DS = XS × YS be a set of paired sample images with their ground-
truth annotated segmentation maps (XS = {xi}M

i=1 and YS = {yi}M
i=1,

respectively), drawn from a source distribution PS(X , Y). In the SiS
context, x and y represent images and their pixel-wise annotations,
respectively, x ∈ RH×W ×3 and y ∈ RH×W ×C , where (H, W ) is the
image size and C is the number of semantic categories. Let DT = XT =
{xi}N

i=1 be a set of unlabeled samples drawn from a target distribution
PT , such that PS ̸= PT due to the domain shift. In the UDA setup, both
sets are available at training time (D = DS ∪ DT ) and the goal is to
learn a model performing well on samples from the target distribution.

Often, the segmentation network used in DASiS has an encoder-
decoder structure (see Figure 2.1) and the domain alignment can happen
at different levels of the segmentation network, including the output
of the encoder, at various level of the decoder, or even considering the
label predictions as features (as discussed later in this section). Hence,
the features used to align the domains can be extracted at image level,
region level or pixel-level. Therefore, when we use the notation of FS

and FT to refer to any of the above source respectively target feature
generator. Note that it is frequent that the feature encoders FS and FT

share their parameters θFS
and θFT

– in this case, we simply refer to
them as F and θF .

In the following, we will cover some basic components and commonly
used losses that constitute the foundation of most UDA and DASiS
approaches.
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Figure 2.1: Several DASiS models adopt a Siamese architecture with one branch
per domain, where the alignment is carried out at different levels of the pipeline: at
pixel level, by transferring the image style from one domain to another; at network
level, by aligning the image features, derived from activation layers and sharing (full
or partial) the network parameters; and finally at the output level, by aligning the
class prediction maps.

Distribution Discrepancy Minimization. In image classification,
one popular approach to address UDA is to minimize the distribution
discrepancy between source and target domains in some latent feature
space – that is, the space of the learned visual representation. This
space often corresponds to some activation layers; most often the last
layer the classifier is trained on, but other layers can be considered as
well. One popular measure is the empirical Maximum Mean Discrepancy
(MMD) (Borgwardt et al., 2006), that is written as

Lmmd =

∥∥∥∥∥∥ 1
M

∑
xs∈XS

ϕ(FS(xs)) − 1
N

∑
xt∈XT

ϕ(FT (xt))

∥∥∥∥∥∥ ,

where ϕ is the mapping function corresponding to a Reproducing Kernel
Hilbert Space (RKHS) kernel defined as a mixture of Gaussian kernels.
Adversarial Training. An alternative to minimizing the distribution
discrepancy between source and target domains is given by adversarial
training (Goodfellow et al., 2014). Multiple studies have shown that
domain alignment can be achieved by learning a domain classifier CDisc

(the discriminator) with the parameters θD to distinguish between the
feature vectors from source and target distributions and by using an
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adversarial loss to increase domain confusion (Ganin et al., 2016; Tzeng
et al., 2015; Tzeng et al., 2017). The main, task-specific deep network –
in our case SiS – aims to learn a representation that fools the domain
classifier, encouraging encoders to produce domain-invariant features.
Such features can then be used by the final classifier, trained on the
source data, to make predictions on the target data. Amongst the typical
adversarial losses, we mention the min-max game proposed by Ganin
et al. (2016)

Ladv = min
θF ,θC

max
θD

{Exs∈XS [LT ask(F (xs), ys)]

− λ · Ex∈XS∪XT [LDisc(F (x), yd)]},

where LT ask is the loss associated with the task of interest (it depends
on both the feature encoder parameters θF and the final classifier’s
parameters θC), LDisc is a loss measuring how well a discriminator model
parametrized by θD can distinguish whether a feature belongs to source
(yd = 1) or to target domain (yd = 0), and λ is a trade-off parameter.
By alternatively training the discriminator CDisc to distinguish between
domains and the feature encoder F to fool it, one can learn domain
agnostic features. Also, training the encoder and the final classifier Ctask

for the task of interest, guarantees that such features are not simply
domain-invariant, but also discriminative.

An effective way to approach this minimax problem consists in
introducing a Gradient Reversal Layer (GRL) (Ganin et al., 2016)
which reverses the gradient direction during the backward pass in
backpropagation (in the forward pass, it is inactive). The GRL allows
to train the discriminator and the encoder at the same time.

A related but different approach by Tzeng et al. (2017) brings adver-
sarial training for UDA closer to the original GAN formulation (Good-
fellow et al., 2014). It splits the training procedure into two different
phases: a fully discriminative one, where a module is trained on source
samples, and a fully generative one, where a GAN loss is used to learn
features for the target domain that mimic the source ones – or, more
formally, that are projected into the same feature space, on which the
original classifier is learned. This second step can be carried out by
approaching the following minimax game
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LGAN = min
θFT ,θFS

max
θD

{Exs∈XS [log(CDisc(FS(xs)))]

+ Ext∈XT [log(1 − CDisc(FT (xt)))]} ,

where CDisc is the discriminator, and both FS and FT are initialized
with the weights pre-trained by supervised learning on the source data.

2.2 Adapting SiS between Domains

Since the advent of representation learning solutions in most machine
learning applications, UDA research has witnessed a shift towards
end-to-end solutions to learn models that may perform well on target
samples. In image classification, a very successful idea has been to learn
a representation where the source and target samples get aligned – that
is, the source and target distributions are close in the feature space
under some statistical metrics.

This alignment is often achieved by means of a Siamese architec-
ture (Bromley et al., 1993) with two streams, each corresponding to a
semantic segmentation model: one stream is aimed at processing source
samples and the other at processing the target ones (as shown in Fig-
ure 2.1). The parameters of the two streams can be shared, partially
shared or domain specific; generally, the backbone architectures of both
streams are initialized with weights that are pre-trained on the source
set. The Siamese network is typically trained with a loss comprising
two terms. For what concerns SiS, one term is the standard pixel-wise
cross-entropy loss (referred in this paper also as LT ask), measuring
performance on source samples for which the ground-truth annotations
are available

Lce = −E(XS ,YS)

 ∑
h,w,c

y(h,w,c)
s · log(p(h,w,c)(FS(xs)))

 ,

where p(h,w,c)(FS(xs)) is a probability of class c at pixel x(h,w)
s and

y(h,w,c)
s is 1 if c is the pixel’s true class and 0 otherwise.

The second term is a domain alignment loss that measures the
distance between source and target samples. The alignment can be
addressed at different levels of the pipeline, as illustrated in Figure 2.1,
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namely, network (feature), at image (pixel) and output (prediction)
levels, as detailed in Sections 2.2.1, 2.2.2 and 2.2.3, respectively. Note
that – as shown in Table 2.1 – many approaches apply alignment at
multiple levels.

While aligning the marginal feature distributions tends to reduce
the domain gap, it can be sub-optimal as it does not explicitly take
the specific task of interest (in this case, SiS) into account during the
domain alignment as discussed for example by Zhao et al. (2019a).
To overcome these weaknesses, several works have been proposed to
leverage the class predictions during the alignment, what we call output
level alignment (see Section 2.2.3). Furthermore, there is a growing
interest for adaptation at pixel-level (see Section 2.2.2), Indeed, the
shift between two domains is often strongly related to visual appear-
ance variations such as day versus night, seasonal changes, synthetic
versus real. By exploiting the progress of image-to-image translation
and style transfer brought by deep learning-based techniques (Huang
and Belongie, 2017; Zhu et al., 2017), several DASiS methods have
been proposed to explicitly account for such stylistic domain shifts by
performing an alignment at image level.

In the following, we discuss in details alignment solutions between
source and target at various levels of the segmentation pipeline.

2.2.1 Feature-level adaptation

Generic DA solutions proposed for image classification perform domain
alignment in a latent space by minimizing some distance metrics, – such
as the maximum mean discrepancy (MMD) (Long et al., 2015b) between
feature distributions of source and target data, – or by adversarially
training a domain discriminator to increase domain confusion (Ganin
et al., 2016; Tzeng et al., 2015; Tzeng et al., 2017). Both approaches
scale up to semantic segmentation problems. In particular, adversarial
training has been largely and successfully applied and combined with
other techniques.

In DASiS, we consider more complex models to tackle the SiS task.
We recall that adaptation in SiS is more challenging than in image
classification, due to the structural complexity and the scale factor of
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the task. Indeed it is rather difficult and sub-optimal to fully capture
and handle the DASiS problem by simple alignment of the latent
global representations (activation layers) between domains. Therefore,
the domain alignment is often carried out at different layers of the
network (see Figure 2.2). The alignment is done either by minimizing
the feature distribution discrepancy (Bermúdez-Chacón et al., 2018)
or by adversarial training via a domain classifier to increase domain
confusion (Hoffman et al., 2016; Huang et al., 2018a; Shen et al., 2019).

Figure 2.2: In generic DA, domain alignment is often performed in a single latent
representation space. In DASiS, the alignment is often done at multiple layers, by
discrepancy minimization between feature distributions or by adversarial learning
relying on a domain classifier (DC) to increase domain confusion. Encoders and
decoders of the segmentation network are often shared: ES = ET , DS = DT .

While some works consider the alignment simply a global represen-
tation of the image (Huang et al., 2018a) – by flattening or pooling
the activation map – most often pixel-wise (Hoffman et al., 2016),
grid-wise (Chen et al., 2017a) or region-wise (Zhang et al., 2020c) rep-
resentations are used. Furthermore, to improve the model performance
on the target data, such methods are often combined with some prior
knowledge or specific tools as discussed below (and also in Section 2.3).

In their seminal work, Hoffman et al. (2016) combine the distribution
alignment with the class-aware constrained multiple instance loss used
to transfer the spatial layout. Chen et al. (2017a) consider global and
class-wise domain alignment and address it via adversarial training. In
particular, they rely on local class-wise domain predictions over image
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grids assuming that the composition/proportion of object classes across
domains – different urban environments in their case – is similar.

Hong et al. (2018a) rely on a conditional generator that transforms
the source features into target-like features, using a multi-layer percep-
tron as domain discriminator. Assuming that decoding these target-like
feature maps preserve the semantics, they are used with the correspond-
ing source labels within an additional cross-entropy loss to make the
model more suitable for the target data.

The Pivot Interaction Transfer (Lv et al., 2020) consists in opti-
mizing a semantic consistency loss between image-level and pixel-level
semantic information. This is achieved by training the model with
both a fine-grained component producing pixel-level segmentation and
coarse-grained components generating class activation maps obtained
by multiple region expansion units, trained with image-level category
information independently. Zhang et al. (2020c), to improve alignment,
explore three label-free constraints as model regularizer, enforcing patch-
level, cluster-level and context-level semantic prediction consistencies at
different levels of image formation (see Figure 2.3).

Figure 2.3: To improve the domain alignment, Zhang et al. (2020c) propose to reduce
patch-level, cluster-level and context-level inconsistencies. Figure based on Zhang
et al. (2020c).

2.2.2 Image-level adaptation

This class of methods relies on image style transfer (IST) methods, where
the main idea is to transfer the domain style (appearance) from target
to source, from source to target, or considering both (see illustration
in Figure 2.4). The style transferred source images maintain the semantic
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content of the source, and therefore its pixel-level labeling too, while
their appearance results more similar to the target style – helping the
network to learn a model more suitable for the target domain (Csurka
et al., 2017; Thomas and Kovashka, 2019).

Figure 2.4: In image-level adaptation that relies on image style transfer (IST), the
main idea is to translate the style of the target domain to the source data and/or
the source style to the target domain. In order to improve the style transfer, often
the style transferred image is translated back to the original domain allowing to use
a cyclic consistency reconstruction loss. The style transferred source images inherit
the semantic content of the source and thus its pixel-level labeling, that allows the
segmentation network to learn a model suitable for the target domain. On the other
hand, the target and the source-like target image share the content and therefore
imposing that their predicted segmentation should match, – using the semantic
consistency loss as a regularization, – which helps improving the model performance
in the target domain.

Image-to-image translation for UDA has been pioneered within the
context of image classification (Bousmalis et al., 2017; Liu and Tuzel,
2016; Taigman et al., 2017); typically, such methods employ GANs
(Goodfellow et al., 2014) to transfer the target images’ style into one
that resembles the source style. This approach has been proved to be
a prominent strategy also within DASiS (Chang et al., 2019a; Chen
et al., 2019c; Hoffman et al., 2018b; Murez et al., 2018; Toldo et al.,
2020b; Sankaranarayanan et al., 2018; Wu et al., 2018; Yang et al.,
2020d). Still, as in the case of feature alignment, for a better adaptation
most methods combine the image translation with other ingredients (see
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also Table 2.1), most often with self-training and different consistency
regularization terms (detailed in Section 2.3).

The most used regularization terms in IST based DASiS are the
cycle consistency loss and the semantic consistency loss proposed by
Hoffman et al. (2018b). The proposed CyCADA is one of the first
model that adopted image-to-image translation – and in particular the
consistency losses pioneered by Cycle-GAN (Zhu et al., 2017) – for the
DASiS problem. The cycle consistency loss is defined as follows

Lcycle = Exs∼XS

[
∥GT →S (GS→T (xs)) − xs∥k

]
+ ExT ∼XT

[
∥GS→T (GT →S (xt)) − xt∥k

]
.

where GS→T and GT →S are the image generators that learn to map the
style from source to target and target to source, respectively and ∥ · ∥k

is the Lk loss, where most often the L1 or the L2 loss is used. In short,
this loss encourages the preservation of structural properties during the
style transfer, while the semantic consistency loss

LSemCons = LT ask (FS(GS→T (xs)), p(FS(xs)))
+ LT ask (FS(GT →S(xt)), p(FS(xt))) ,

enforces an image to be labeled identically before and after translation.
The task loss LT ask here is the source pixel-wise cross-entropy, but
instead of using GT label maps, it is used with the pseudo-labeled
predicted maps p(FS(xs)) = argmax(FS(xs)) and p(FS(xt)) = argmax
(FS(xt)), respectively.

Inspired by CyCADA, several approaches tried to refine IST for the
DASiS problem. Murez et al. (2018) propose a method that simultane-
ously learns domain specific reconstruction with cycle consistency and
domain agnostic feature extraction, and learn to predict the segmenta-
tion from these agnostic features. In the IST based method proposed
by Zhu et al. (2018) the classical cross-entropy loss is replaced by a
so-called Conservative Loss that penalizes the extreme cases, – for which
performance is very good or very bad – enabling the network to find an
equilibrium between its discriminative power and its domain-invariance.

Toldo et al. (2020b) perform image-level domain adaptation with
Cycle-GAN (Zhu et al., 2017) and feature-level adaptation with a
consistency loss between the semantic maps. Furthermore, they consider
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as backbone a lightweight MobileNet-v2 architecture which allows the
model’s deployment on devices with limited computational resources
such as the ones used in autonomous vehicles.

Li et al. (2018d) propose a semantic-aware Grad-GAN that aims
at transferring personalized styles for distinct semantic regions. This
is achieved by a soft gradient-sensitive objective for keeping semantic
boundaries, and a semantic-aware discriminator for validating the
fidelity of personalized adaptions with respect to each semantic region.

The method introduced by Wu et al. (2018) jointly synthesizes
images and, to preserve the spatial structure, performs segmentation by
fusing channel-wise distribution alignment with semantic information in
both the image generator and the segmentation network. In particular,
the generator synthesizes new images on-the-fly to appear target-like
and the segmentation network refines the high level features before
predicting semantic maps by leveraging feature statistics of sampled
images from the target domain.

Chen et al. (2019c) rely on both image-level adversarial loss to learn
image translation and feature-level adversarial loss to align feature
distributions. Furthermore, they propose a bi-directional cross-domain
consistency loss based on KL divergence, – to provide additional su-
pervisory signals for the network training, – and show that this yields
more accurate and consistent predictions in the target domain.

The Domain Invariant Structure Extraction (DISE) method (Chang
et al., 2019a) combines image translation with the encoder-decoder based
image reconstruction, where a set of shared and private encoders are
used to disentangle high-level, domain-invariant structure information
from domain-specific texture information. Domain adversarial losses
and perceptual losses ensure the perceptual similarities between the
translated images and their counterparts in the source or target domains.
Furthermore, an adversarial loss in the output space ensures domain
alignment and therefore generalization to the target.

The approach by Li et al. (2019c) relies on bi-directional learning,
proposing to move from a sequential pipeline – where the SiS model
benefits from the image-to-image translation network – to a closed
loop, where the two modules help each other. Essentially, the idea is to
propagate information from semantic segmentation back to the image
transformation network as a semantic consistent regularization.
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Cheng et al. (2021) consider two image translation and segmenta-
tion pipelines from opposite domains to alleviate visual inconsistencies
raised by image translation and to promote each other in an interac-
tive manner. The source path assists the target path to learn precise
supervision from source data, while the target path guides the source
path to generate high quality pseudo-labels for self-training the target
segmentation network. Musto and Zinelli (2020) propose a source to
target translation model guided by the source semantic map using
Spatially-Adaptive (De)normalization (SPADE) (Park et al., 2019) and
Instance Normalization layers (Ulyanov et al., 2016).

Yang et al. (2020b) introduce a reconstruction network that relies on
conditional GANs, which learn to reconstruct the source or the source-
like target image from their respective predicted semantic label map.
Furthermore, a perceptual loss and a discriminator feature matching loss
are used to enforce the semantic consistency between the reconstructed
and the original image features.

Some recent works propose IST solutions that do not rely primarily
on GANs for image translation. For instance, the innovative approach
by Yang and Soatto (2020) relies on the Fourier Transform and its
inverse to map the target style into that of the source images, by
swapping the low-frequency component of the spectrum of the images
from the two domains. The same research team proposes to exploit the
phase of the Fourier transform within a consistency loss (Yang et al.,
2020d); this guarantees to have an image-to-image translation network
that preserves semantics.

2.2.3 Output-level adaptation

To avoid the complexity of high-dimensional feature space adaptation,
several papers propose to perform instead adversarial adaptation on
the low-dimensional label prediction output space, – defined by the
class-likelihood maps (see Figure 2.5). In this case, the pixel-level repre-
sentations corresponds to the class predictions (forming a C dimensional
vector), and in the derived feature space, – similarly to the approaches
described in Section 2.2.1, – domain confusion between the domains can
be achieved by learning a corresponding domain discriminator. Such
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adversarial learning in the output space has been initially proposed
by Tsai et al. (2019) where they learn a discriminator to distinguish
whether the segmentation predictions come from the source or from the
target domain. To make the model adaptation more efficient, auxiliary
pixel-level semantic and domain classifiers are added at multiple layers
of the network, and trained jointly.

Figure 2.5: Adversarial adaptation on the label prediction output space, where
pixel-level representations are derived from the class-likelihood map and used to
train the domain classifier.

Vu et al. (2019a) first derive the so called weighted self-information
maps (wSIM) defined as

I(h,w,c)
x = −p(h,w,c) log p(h,w,c)

and perform adversarial adaptation on the features derived from these
maps. Furthermore, they show that minimizing the sum of these wSIMs
is equivalent to direct entropy minimization and train the model jointly
with these two complementary entropy-based losses (the direct entropy
and the corresponding adversarial loss). Pan et al. (2020) instead train a
domain classifier on the entropy maps E

(h,w)
x = −

∑
c I

(h,w,c)
x to reduce

the distribution shift between the source and target data.
Output level adversarial learning has often been used in combination

with image-level style transfer and self-training (Chang et al., 2019a; Li
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et al., 2019c; Wang et al., 2021d) and curriculum learning (Pan et al.,
2020) (see also Table 2.1).

2.3 Complementary Techniques

In the previous section, we mainly focused on the core issue of do-
main alignment; in this section, we discuss other techniques that can
be coupled with the DASiS methods previously presented. Generally,
they are not explicitly focused on domain alignment, but rather on
improving the segmentation model accuracy on the target data. As a
part of the transfer learning, DASiS – and UDA in general – possesses
characteristics (domain separation, unlabeled target instances, etc.)
that encourage researchers to integrate techniques from ensemble, semi-
and self-supervised learning, often resulting in their mutual empower-
ing. While being extensively used in UDA research, the methodologies
detailed below originated from other branches of machine learning; for
example, self-training with pseudo-labels (Lee, 2013) and entropy mini-
mization (Grandvalet and Bengio, 2004) have been originally formulated
for semi-supervised learning; curriculum learning has been devised as
a stand-alone training paradigm (Bengio et al., 2009); model distilla-
tion and self-ensembling are recent deep learning techniques that allow
training more accurate models.

2.3.1 Pseudo-labelling and self-training (SelfT)

Originated from semi-supervised learning, the idea is to generate pseudo-
labels for the target data and to refine (self-train) the model over
iterations, by using the most confident labels from the target set (Li
et al., 2019c; Zou et al., 2018; Kim and Byun, 2020; Li et al., 2019c) (see
illustration in Figure 2.6). Indeed, pseudo-labels are often error-prone,
so it is important to select the most reliable ones and to progressively
increase the set of pseudo-labels as the training progresses. To this end,
different works have been proposed that extrapolate the pseudo-label
confidence relying on the maximum class probability (MCP) of the
model output (Li et al., 2020a; Wang et al., 2020f; Zou et al., 2018)
or on the entropy of the softmax predictions (Saporta et al., 2020).
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Figure 2.6: Pseudo-labeling. Originated from semi-supervised learning, the idea is
to generate pseudo-labels for the target data and to refine the model over iterations,
by using the most confident labels from the target set.

Pseudo-labels for which the prediction is above a certain threshold are
assumed to be reliable; vice-versa, values below the threshold are not
trusted. As shown in Table 2.1, self-training is one of the most popular
complementary methods combined with domain alignment techniques.

In the following, we list a few of such methods with their particular-
ities, aimed at further improving the effectiveness of self-learning. To
avoid the gradual dominance of large classes on pseudo-label genera-
tion, Zou et al. (2018) propose a class balanced self-training framework
and introduce spatial priors to refine the generated labels. Chen et al.
(2017a) rely on static-object priors estimated for the city of interest
by harvesting the Time-Machine of Google Street View to improve
the soft pseudo-labels required by the proposed class-wise adversarial
domain alignment. Kim and Byun (2020) introduce a texture-invariant
pre-training phase; in particular, the method relies on image-to-image
translation to learn a better performing model at a first stage, which is
then adapted via the pseudo-labeling in a second stage.

In order to regularize the training procedure, Zheng and Yang (2020)
average predictions of two different sets from the same network. Relat-
edly, Shen et al. (2019) combine the output of different discriminators
with the confidence of a segmentation classifier, in order to increase the
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reliability of the pseudo-labels. To rectify the pseudo-labels, Zheng and
Yang (2021) propose to explicitly estimate the prediction uncertainty
during training. They model the uncertainty via the prediction variance
and integrate the uncertainty into the optimization objective.

Corbière et al. (2021) propose an auxiliary network to estimate the
true-class probability map for semantic segmentation and integrate it
into an adversarial learning framework to cope with the fact that the
predicted true-class probabilities might suffer from the domain shift.
The confidence branch has a multi-scale architecture based on ASPP,
allowing the network to better cope with semantic regions of variable
size in the image.

Differently, Mei et al. (2020) propose an instance adaptive framework
where pseudo-labels are generated via an adaptive selector, namely a
confidence-based selection strategy with a confidence threshold that is
adaptively updated throughout training. Regularization techniques are
also used to respectively smooth and sharpen the pseudo-labeled and
non-pseudo-labeled regions.

In order to make the self-training less sensitive to incorrect pseudo-
labels, Zou et al. (2019) rely on soft pseudo-labels in the model regu-
larization, forcing the network output to be smooth. Shin et al. (2020)
propose a pseudo-label densification framework where a sliding window
voting scheme is used to propagate confident neighbor predictions. In
a second phase, a confidence-based easy-hard classifier selects images
for self-training, while a hard-to-easy adversarial learning pushes hard
samples to be like easy ones.

Zhang et al. (2019) propose a strategy where pseudo-labels are used
in both a cross-entropy loss and a category-wise distance loss, where
class-dependent centroids are used to assign pseudo-labels to training
samples. Li et al. (2020a) select source images that are most similar to
the target ones via semantic layout matching and to retain some pixels
for the adaptation via pixel-wise similarity matching. These pixels are
used together with pseudo-labeled target samples to refine the model.
Furthermore, entropy regularization is imposed on all the source and
target images.

To mitigate low-quality pseudo-labels arising from the domain shift,
Tranheden et al. (2021) propose to mix images from the two domains
along with the corresponding labels and pseudo-labels. While training
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the model, they enforce consistency between predictions of images in
the target domain and images mixed across domains.

Guo et al. (2021b) propose to improve the reliability of pseudo-labels
via a meta-correction framework; they model the noise distribution
of the pseudo-labels by introducing a noise transaction matrix that
encodes inter-class noise transition relationship. The meta-correction
loss is further exploited to improve the pseudo-labels via a meta-learning
strategy to adaptively distill knowledge from all samples during the
self-training process.

Alternatively, pseudo-labels can also be used to improve the model
without necessarily using them in a self-training cross-entropy loss. For
example, Wang et al. (2020f) use pseudo-labels to disentangle source
and target features by taking into account regions associated with things
and stuff (Caesar et al., 2018).

Du et al. (2019) use separate semantic features according to the
downsampled pseudo-labels to build class-wise confidence map needed
to reweigh the adversarial loss. A progressive confidence strategy is
used to obtain reliable pseudo-labels and, in turn, class-wise confidence
maps.

2.3.2 Entropy minimization of target predictions (TEM)

Originally devised for semi-supervised learning (Grandvalet and Bengio,
2004), entropy minimization has received a broad recognition as an
alternative or complementary technique for domain alignment. Different
DASiS/UDA methods extend simple entropy minimization on the target
data by applying it jointly with adversarial losses (Du et al., 2019; Vu
et al., 2019a) or square losses (Chen et al., 2019a; Toldo et al., 2021).

Vu et al. (2019a) propose to enforce structural consistency across
domains by minimizing both the conditional entropy of pixel-wise pre-
dictions and an adversarial loss that ensures the distribution matching
in terms of weighted entropy maps (as discussed in Section 2.2.3). The
main advantage of their approach is that computation of the pixel-wise
entropy does not depend on any network and entails no overhead.

Similarly, Huang et al. (2020a) design an entropy-based minimax
adversarial learning scheme to align local contextual relations across
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domains. The model learns to enforce the prototypical local contex-
tual relations explicitly in the feature space of a labeled source do-
main, while transferring them to an unlabeled target domain via
backpropagation-based adversarial learning using a Gradient Rever-
sal Layer (GRL) (Ganin et al., 2016).

Chen et al. (2019a) show that entropy minimization based UDA
methods often suffer from the probability imbalance problem. To pre-
vent the adaptation process from being dominated by the easiest to
adapt samples, they propose instead a class-balanced weighted maximum
squares loss with a linear growth gradient. Furthermore, they extend the
model with self-training on low-level features guided by pseudo-labels
obtained by averaging the output map at different levels of the network.
Toldo et al. (2021) integrate this image-wise class-balanced entropy-
minimization loss to regularize their feature clustering-based DASiS
method. To further enhance the discriminative clustering performance,
they introduce an orthogonality loss – which force individual represen-
tations to be orthogonal, – and a sparsity loss to reduce class-wise the
number of active feature channels.

The Bijective Maximum Likelihood (BiMaL) loss (Truong et al.,
2021) is a generalized form of the adversarial entropy minimization,
without any assumption about pixel independence. The BiMaL loss is
formed using a maximum-likelihood formulation to model the global
structure of a segmentation input, and a bijective function, to map
that segmentation structure to a deep latent space. Additionally, an
unaligned domain score is introduced to measure the efficiency of the
learned model on a target domain in an unsupervised fashion.

2.3.3 Curriculum learning (CurrL)

Several papers apply curriculum strategy to DASiS; the main idea is
to apply simpler, intermediate tasks to determine certain properties of
the target domain which allow to improve performance on the main
segmentation task. In this regard, Zhang et al. (2020b) propose to use
image-level label distribution to guide the pixel-level target segmentation.
Furthermore, they use the label distributions of anchor super-pixels
to indicate the network where to update. Learning these easier tasks
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improves the predicted pseudo-labels for the target samples and therefore
can be used to effectively regularize the fine-tuning of the SiS network.

Similarly, Sakaridis et al. (2019) propose a curriculum learning
approach where models are adapted from day-to-night learning with
progressively increasing the level of darkness. They exploit the corre-
spondences of images captured across different daytime to improve pixel
predictions at inference time. Lian et al. (2019) adopt the easy-to-hard
curriculum learning approach by predicting labels first at image level,
then at region level and finally at pixel level (the main task).

To further improve model performance in the target domain, Pan et
al. (2020) separate the target data into easy and hard samples – relying
on the entropy – and try to diminish the gap between those predictions
by so called intra-domain adversarial training on the corresponding
entropy maps (see also Section 2.2.3).

2.3.4 Co-training (CoT)

Another set of UDA/DASiS methods has been inspired by co-training
(Zhou and Li, 2005) where the idea is to have two distinct classifiers en-
forced to be diverse, in order to capture different views of the data while
predicting the same labels. The main idea behind such methods is that
diversifying the classifiers in terms of learned parameters – while at the
same time maximizing the consensus on their predictions – will encour-
age the model to output more discriminative feature maps for the target
domain. The rationale is that the target samples near the class bound-
aries are likely to be misclassified by the source classifier and using the
disagreement of two classifiers on the prediction for target samples can
implicitly detect such cases and, in turn, improve the class boundaries.

The first such UDA model maximizing the classifier discrepancy
has been proposed by Saito et al. (2018b) where the adversarial model
alternates between 1) maximizing the discrepancy between two classifiers
on the target sample while keeping the feature generator fixed, and 2)
training the feature encoder to minimize discrepancy while keeping the
classifiers fixed. As an alternative, to encourage the encoder to output
more discriminative features for the target domain, Saito et al. (2018a)
rely on adversarial dropout and Luo et al. (2019b) enforce the weights



64 Domain Adaptation for SiS (DASiS)

of the two classifiers to be diverse while using self-adaptive weights in
the adversarial loss to improve local semantic consistency. Finally, Lee
et al. (2019a) consider the sliced Wasserstein discrepancy to capture the
dissimilarity between the predicted probability measures that provides
a geometrically meaningful guidance to detect target samples that lie
far from the support of the source.

2.3.5 Self-ensembling

Another popular method for semi-supervised learning is to use an ensem-
ble of models and to exploit the consistency between predictions under
some perturbations. While Laine and Aila (2016) propose the temporal
ensembling by taking the per-sample moving average of predictions,
Tarvainen and Valpola (2017) replace the averaging predictions with an
exponential moving average (EMA) of the model weights. In the latter
case the Mean Teacher framework is used, represented by a second,
non-trainable model whose weights are updated with the EMA over the
actual trainable weights.

Such self-ensembling models can also be considered for UDA and
DASiS, where the model is generally composed of a teacher and a student
network, encouraged to produce consistent predictions. The teacher
is often an ensembled model that averages the student’s weights and
therefore the predictions from the teacher can be interpreted as pseudo-
labels for the student model. Indeed, French et al. (2018) extend the
model proposed by Tarvainen and Valpola (2017) to UDA considering a
separate path for source and target, and sampling independent batches
making the Batch Normalization (BN) (Ioffe and Szegedy, 2015) domain
specific during the training process. Perone et al. (2019) apply self-
ensembling to adapt medical image segmentation. The Self-ensembling
Attention Network by Xu et al. (2019b) aims at extracting attention
aware features for domain adaptation (see Figure 2.7).

In contrast to the above mentioned ensemble models, which are effec-
tive but require heavily-tuned manual data augmentation for successful
domain alignment, Choi et al. (2019) propose a self-ensembling frame-
work which deploys a target-guided GAN-based data augmentation with
spectral normalization. To produce semantically accurate prediction
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Figure 2.7: The self-ensembling attention network (Xu et al., 2019b) consists of a
student network and a teacher network. The two networks share the same architecture
with an embedded attention module. The student network is jointly optimized with a
supervised segmentation loss for the source domain and an unsupervised consistency
loss for the target domain. The teacher network is excluded from the back-propagation,
it is updated with an exponential moving average. In the test phase, the target-
domain images are sent to the teacher network to accomplish the SiS task. Image
based on Xu et al. (2019b).

for the source and augmented samples, a semantic consistency loss is
used. More recently, Wang et al. (2021b) proposed a method that relies
on AdaIN (Huang and Belongie, 2017) to convert the style of source
images into that of the target images, and vice-versa. The stylized
images are exploited in a training pipeline that exploits self-training,
where pseudo-labels are improved via the usage of self-ensembling.

2.3.6 Model distillation

In machine learning, model distillation (Hinton et al., 2015) has been
introduced as a way to transfer the knowledge from a large model to a
smaller one – for example, compressing the discriminative power of an
ensemble of models into a single, lighter one. In the context of DASiS,
it has been exploited to guide the learning of more powerful features
for the target domain, transferring the discriminative power gained on
the source samples.

Chen et al. (2018c) propose to tackle the distribution alignment
in DASiS by using a distillation strategy to learn the target style
convolutional filters (see Figure 2.8). Furthermore, taking advantage of
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the intrinsic spatial structure presented in urban scene images (that they
focus on), they propose to partition the images into non-overlapping
grids, and the domain alignment is performed on the pixel-level features
from the same spatial region using GRL (Ganin et al., 2016). The
Domain Adaptive Knowledge Distillation model (Kothandaraman et al.,
2021) consists of a multi-level strategy to effectively distill knowledge at
different levels – feature space and output space – using a combination
of KL divergence and MSE losses.

Figure 2.8: Chen et al. (2018c) propose to incorporate a target guided distillation
module to learn the target (real) style convolutional filters from the (synthetic)
source ones and to combine it with a spatial-aware distribution adaptation module.
Figure based on Chen et al. (2018c).

Chen et al. (2022) formalize the self-training as knowledge distillation
where the target network is learned by knowledge distillation from the
source teacher model. They analyze failures when adapting Swin Trans-
former (Liu et al., 2021d) based segmentation model to new domains,
and suggest that these failures are due to the severe high-frequency
components generated during both the pseudo-label construction and
feature alignment for target domains. As a solution, they introduce
a low-pass filtering mechanism integrated into a momentum network
which smooths the learning dynamics of target domain features and their
pseudo labels. Then a dynamic adversarial training strategy is used to
align the distributions, where the dynamic weights are used to evaluate
the importance of the samples. In a similar spirit, Hoyer et al. (2022)
exploit the strengths of the transformers in a knowledge distillation-
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based self-training framework. The proposed DAFormer architecture is
based on a Transformer encoder and a context-aware fusion decoder. To
overcome adaptation instability and overfitting to the source domain,
they propose Rare Class Sampling, which takes into account the long-
tail distribution of the source domain. They further distill ImageNet
knowledge through the Thing-Class ImageNet Feature Distance.

2.3.7 Adversarial attacks

The aim of adversarial attacks (Szegedy et al., 2014) is to perturb
examples in a way that makes deep neural networks fail when processing
them. The model trained with both clean and perturbed samples in an
adversarial manner, have been shown to learn more robust models for
the given task. While the connection between adversarial robustness and
generalization is not fully explained yet (Gilmer et al., 2019), adversarial
training has been successfully applied to achieve different goals than
adversarial robustness; for instance, it has been used to mitigate over-
fitting in supervised and semi-supervised learning (Zheng et al., 2016),
to tackle domain generalization tasks (Volpi et al., 2019), or to fill
in the gap between the source and target domains by adapting the
classification decision boundaries (as discussed in Section 2.2).

Concerning adversarial attack in the case of DASiS, Yang et al.
(2020a) propose pointwise perturbations to generate adversarial features
that capture the vulnerability of the model – for example the tendency
of the classifier to collapse into the classes that are more represented,
in contrast with the long tail of the most under-represented ones – and
conduct adversarial training on the segmentation network to improve
its robustness.

Yang et al. (2021) study the adversarial vulnerability of existing
DASiS methods and propose the adversarial self-supervision UDA,
where the objective is to maximize – by using a contrastive loss – the
proximity between clean images and their adversarial counterparts in
the output space. Huang et al. (2021) propose a Fourier adversarial
training method, where the pipeline is to generate adversarial samples
– by perturbing certain high frequency components that do not carry
significant semantic information – and use them to train the model. This
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training technique allows reaching an area with a flat loss landscape,
which yields a more robust domain adaptation model.

2.3.8 Self-supervised learning

Self-supervised learning approaches (see also Section 1.3.5) have found
their place in UDA research (Sun et al., 2019c; Bucci et al., 2021;
Xu et al., 2019a). For what concerns DASiS, Araslanov and Roth
(2021) propose a lightweight self-supervised training scheme, where the
consistency of the semantic predictions across image transformations
such as photometric noise, mirroring and scaling is ensured. The model is
trained end-to-end using co-evolving pseudo-labels – using a momentum
network, which is a copy of the original model that evolves slowly – and
maintaining an exponentially moving class prior. The latter is used to
discount the confidence thresholds for classes with few samples, in order
to increase their relative contribution to the training loss.

Similarly, Yang et al. (2021) – as mentioned in the previous para-
graph – exploit self-supervision in DASiS by minimizing the distance
between clean and adversarial samples in the output space via a con-
trastive loss.

2.4 Beyond Classical DASiS

Typical DASiS methods assume that both source and target domains
consist of samples drawn from single data distributions, both available,
and that there is a shift between the two distributions. Yet, these
assumptions may not hold in the real world and therefore several
methods have been proposed that tackle specific problem formulations
where some of these assumptions are relaxed or additional constraints
added (see Figure 2.9 for an illustration of different scenarios related to
different data availability assumptions).

For instance, in multi-source domain adaptation (MSDA) the goal
is learning from an arbitrary number of source domains (Section 2.4.1),
and in multi-target domain adaptation (MTDA) the aim is to learn
from a single source for several unlabeled target domains simultaneously
(Section 2.4.2). Instead of having a well defined set of target domains, one
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Figure 2.9: Illustration of different scenarios based on source and target data
availability.

can address the problem of a target distribution which is assumed to be a
compound of multiple, unknown, homogeneous domains (Section 2.4.3).

Alternatively to adapting the model simultaneously to several new
target domains, the learning can be done incrementally when the access
to new domains is in a sequential manner (Section 2.4.4), or considering
a single target domain, but the access to the target data is continuous
and online (Section 2.4.5). One could make the assumption that the
source model is available, but the source data on which it was trained
on is not – the source-free domain adaptation problem (Section 2.4.6);

Another scenario is domain generalization, where the model learns
from one or multiple source domains, but has no access to any target
sample, nor hints on the target distribution (Section 2.4.7). On the
other end, different methods tackle the semi-supervised domain adapta-
tion problem, where one even assumes that a few target samples are
annotated (Section 2.4.8), or can be actively annotated (Section 2.4.9).

Besides the number of domains and the amount of labeled/unlabeled
samples available in the source/target domains, another important axis
of variation for domain adaptation strategies is the overlap between
source and target labels. Indeed, the class of semantic labels in the source
and the target domains is not necessarily the same and, therefore, several
methods have been proposed that address this issue (Section 2.4.10).
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2.4.1 Multi-source DASiS

The simplest way to exploit multiple source domains is to combine all the
available data in a single source and train a classical UDA model. While
this can, in some cases, provide a reasonable baseline, in other cases,
it might yield poor results. This can be due to 1) the fact that there
are several data distributions mixed in the combined source, making
the adaptation process more difficult if this is not explicitly handled,
and 2) in many cases this solution might yield to strong negative
transfer as shown by Mansour et al. (2009). Alternatively, one can
consider a weighted combination of multiple source domains for which
theoretical analysis of error bounds has been proposed by Ben-David
et al. (2010) and Crammer et al. (2008). One such algorithm with strong
theoretical guarantees was proposed by Hoffman et al. (2018a), where
they design a distribution-weighted combination for the cross-entropy
loss and other similar losses. Cortes et al. (2021) propose instead a
discriminative method which only needs conditional probabilities – that
can be accurately estimated for the unlabeled target data, – relying
only on the access to the source predictors and not the labeled source
data. Russo et al. (2019) extend adversarial DASiS to deal with multiple
sources and investigate such baselines, i.e. comparing models trained
on the union of the source domains versus weighted combination of
adaptive adversarial models trained on individual source-target pairs.

Further methods proposed for image classification (Li et al., 2018g;
Peng et al., 2019; Peng et al., 2020; Yang et al., 2020c; Zhao et al.,
2018a; Zhao et al., 2020; Zhou et al., 2020b; Zhu et al., 2019; Nguyen
et al., 2021) show that when the relationship between different source
domains is appropriately exploited, it is possible to train a target model
to perform significantly better than using just the union of source data
or a weighted combination of individual models’ outputs. These deep
multi-source DA (MSDA) approaches have often focused on learning
a common domain-invariant feature extractor that achieves a small
error on several source domains, hoping that such representation can
generalize well to the target domain.

Inspired by these approaches, several methods have been proposed
that extend MSDA solutions from classification to semantic image seg-
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mentation. As such, the Multi-source Adversarial Domain Aggregation
Network (Zhao et al., 2019b) extends (Zhao et al., 2018a) by combining
it with CyCADA (Hoffman et al., 2018b). The model, trained end-to-
end, generates for each source an adapted style transferred domain with
dynamic semantic consistency loss between the source predictions of
a pre-trained segmentation model and the adapted predictions of a
dynamic segmentation model. To make these adapted domains indistin-
guishable, a sub-domain aggregation discriminator and a cross-domain
cycle discriminator is learned in an adversarial manner (see Figure 2.10).

Similarly, Tasar et al. (2020) propose StandardGAN, a data stan-
dardization technique based on GANs (style transfer) for satellite image
segmentation, whose goal is to standardize the visual appearance of
the source and the target domain with adaptive instance normaliza-
tion (AdIN) (Huang and Belongie, 2017) and Least-square GAN (Mao
et al., 2017) to effectively process target samples. Then, they extend
the single-source StandardGAN to multi-source by multi-task learning
where an auxiliary classifier is added on top of the discriminator.

In contrast, He et al. (2021a) propose a collaborative learning ap-
proach. They first translate source domain images to the target style by
aligning the different distributions to the target domain in the LAB color
space. Then, the SiS network for each source is trained in a supervised
fashion by relying on the GT annotations and additional soft supervision
coming from other models trained on different source domains. Finally,
the segmentation models associated with different sources collaborate
with each other to generate more reliable pseudo-labels for the target
domain, used to refine the models.

Gong et al. (2021b) consider the case where the aim is to learn from
different source datasets with potentially different class sets, and formu-
late the task as a multi-source domain adaptation with label unification.
To approach this, they propose a two-step solution: first, the knowledge
is transferred form the multiple sources to the target; second, a unified
label space is created by exploiting pseudo-labels, and the knowledge is
further transferred to this representation space. To address – in the first
step – the risk of making confident predictions for unlabeled samples in
the source domains, three novel modules are proposed: domain attention,
uncertainty maximization and attention-guided adversarial alignment.
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2.4.2 Multi-target DASiS

In multi-target domain adaptation (MTDA) the goal is to learn from a
single labeled source domain with the aim of performing well on multiple
target domains at the same time. To tackle MTDA within an image
classification context, standard UDA approaches were directly extended
to multiple targets (Gholami et al., 2020; Chen et al., 2019d; Roy et al.,
2021; Nguyen-Meidine et al., 2021).

Within the DASiS context, a different path was taken. Isobe et al.
(2021) propose to train an expert model for every target domain where
the models are encouraged to collaborate via style transfer. Such expert
models are further exploited as teachers for a common student model
that learns to imitate their output and serves as regularizer to bring
the different experts closer to each other in the learned feature space.
Instead, Saporta et al. (2021) propose to combine for each target domain
Ti two adversarial pipelines: one that learns to discriminate between
the domain Ti and the source, and one between Ti and the union of
the other target domains. Then, to reduce the instability that the
multi-discriminator model training might cause, they propose a multi-
target knowledge transfer by adopting a multi-teacher/single-student
distillation mechanism, which leads to a model that is agnostic to the
target domains.

2.4.3 Open-compound DASiS

The possibility of having multiple target domains is also addressed
in the open-compound domain adaptation (OCDA) setting, where the
target distribution is assumed to be a compound of multiple, unknown,
homogeneous domains (see Figure 2.11). To face this problem, Liu et al.
(2020b) rely on a curriculum adaptive strategy, where they schedule the
learning of unlabeled instances in the compound target domain accord-
ing to their individual gaps to the labeled source domain, approaching
an incrementally harder and harder domain adaptation problem until
the entire target domain is covered. The purpose is to learn a network
that maintains its discriminative leverage on the classification or seg-
mentation task at hand, while at the same time learning more robust
features for the whole compound domain. To further prepare the model
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for open domains during inference, a memory module is adopted to
effectively augment the representations of an input when it is far away
from the source.

Figure 2.11: In open-compound domain adaptation (OCDA) setting, the target
distribution is assumed to be a compound of multiple, unknown, homogeneous
domains. Figure based on Liu et al. (2020b).

In contrast, Gong et al. (2021a) propose a meta-learning-based
framework to approach OCDA. First, the target domain is clustered
in an unsupervised manner into multiple sub-domains by image styles;
then, different sub-target domains are split into independent branches,
for which domain-specific BN parameters are learned as in Chang et al.
(2019b). Finally, a meta-learner is deployed to learn to fuse sub-target
domain-specific predictions, conditioned upon the style code, which is
updated online by using the model-agnostic meta-learning algorithm
that further improves its generalization ability.

2.4.4 Domain-incremental SiS

Domain incremental learning is a branch of continual learning, where the
goal is extending the underlying knowledge of a machine learning system
to new domains, in a sequence of different stages. These incremental
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learning stages can be either supervised or unsupervised, according to
the available annotations.

For what concerns general solutions under the assumption of super-
vised adaptation, where all data is labeled, a method, not specifically
designed but successfully tested on SiS, was proposed by Volpi et al.
(2021). In order to learn visual representations that are robust against
catastrophic forgetting, they propose a meta-learning solution where
artificial meta-domains are crafted by relying on domain randomization
techniques and they are exploited to learn models that are more robust
when transferred to new conditions. The model can benefit from such a
solution also when only a few samples are stored under the form of an
episodic memory instead of access.

For what concerns methods designed ad hoc for SiS, different works
consider the problem of learning different domains over the lifespan of
a model (Wu et al., 2019; Porav et al., 2019; Garg et al., 2022). They
face the domain-incremental problem by assuming that data from new
domains come unlabeled – and, therefore, they are more connected to
the DASiS literature where the typical task is unsupervised DA.

Wu et al. (2019) propose to generate data that resembles that of the
current target domain and to update the model’s parameters relying
on such samples. They further propose a memory bank to store some
domain-specific feature statistics, in order to quickly restore domain-
specific performance in case the need arises. This is done by deploying
the model on a previously explored domain, on which the model has
been previously adapted already.

Porav et al. (2019) rely on a series of input adapters to convert the
images processed by the computer vision model when they come from
a domain that significantly differ from the source one. They build their
method by using GANs, and the proposed approach does not require
domain-specific fine-tuning. Instead, Garg et al. (2022) learn domain-
specific parameters for each new domain – in their case corresponding to
different geographical regions – whereas other parameters are assumed
to be domain-invariant.
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2.4.5 Online DASiS

In online learning (Cesa-Bianchi and Lugosi, 2006), the goal is taking
decisions and improving the underlying knowledge of the model sample
by sample – in contrast with offline learning, where typically one can
process huge amount of data over multiple epochs. The problem of
online adaptation, intimately connected to online learning, is essentially
that of performing UDA as new samples arrive, in order to better
perform on them. This problem has been recently re-branded as test-
time adaptation (Sun et al., 2020b; Wang et al., 2021a; Schneider et al.,
2020), where the main focus has been mainly on image classification.

While online adaptation has been addressed in the case of object
detection more than a decade ago (Roth et al., 2009), it has been
addressed only recently for SiS. In this context, Volpi et al. (2022)
propose a benchmark to tackle the problem of online adaptation of
SiS models (the OASIS benchmark) where the goal is to adapt pre-
trained models to new, unseen domains, in a frame-by-frame fashion,
Such domain shifts can be adversarial weather conditions met by an
autonomous car (see examples in the ACDC dataset (Sakaridis et al.,
2021) and Section 3.2).

Different approaches from the continual learning and the test-time
adaptation literature have been tailored by Volpi et al. (2022) to face
this problem, and empirically shown to be helpful, in particular, self-
training via pseudo-labels (Lee, 2013) and the application of the TENT
algorithm (Wang et al., 2021a). While adapting the model frame by
frame, the main challenge is avoiding catastrophic forgetting of the
pre-trained model that is adapted to the new sequences. Therefore
two solutions are proposed to tackle this problem, The first one is
experience replay where the test-time adaptation objective is regularized
by optimizing a loss with respect to the original, labeled training samples.
The second solution is a reset strategy that allows resetting the model
to its original weights when catastrophic forgetting is detected.

Concurrently, Wang et al. (2022a) propose a continual Test-Time
Domain Adaptation (CoTTA) model to limit the error accumulation
by using predictions computed via averaging different weights and aug-
mented copies of an image, which allows mitigating catastrophic forget-
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ting. They propose to stochastically restore a small amount of network
units to their source pre-trained values at each iteration and, in turn,
enforcing the adapted model to preserve source knowledge over time.

2.4.6 Source-free domain adaptation

Source-free domain adaptation constitutes the problem of adapting a
given source model to a target domain, but without access to the origi-
nal source dataset. It has been introduced by Chidlovskii et al. (2016),
who propose solutions for both supervised and unsupervised domain
adaptation, testing them in a variety of machine learning problems
(e.g. document analysis, object classification, product review classifica-
tion).

More recently, Li et al. (2020c) propose to exploit the pre-trained
source model as a starting component for an adversarial generative model
that generates target-style samples, improving the classifier performance
in the target domain, and in turn, improving the generation process.
Liang et al. (2020) learn a target-specific feature extraction module by
implicitly aligning target representations to the source hypothesis, with
a method that exploits at the same time information maximization and
self-training. Kurmi et al. (2021) treat the pre-trained source model as
an energy-based function, in order to learn the joint distribution, and
train a GAN that generates annotated samples that are used throughout
the adaptation procedure. Xia et al. (2021) propose a learnable target
classifier that improves the recognition ability on source-dissimilar
target features, and perform adversarial domain-level alignment and
contrastive matching at category level.

For semantic segmentation, Liu et al. (2021c) propose a dual atten-
tion distillation mechanism to help the generator to synthesize samples
with meaningful semantic context used to perform efficient pixel-level
domain knowledge transfer. They rely on an entropy-based intra-domain
module to leverage the correctly segmented patches as supervision
during the model adaptation stage (see Figure 2.12).

Sivaprasad and Fleuret (2021) propose a solution where the uncer-
tainty of the target domain samples’ predictions is minimized, while
the robustness against noise perturbations in the feature space is max-
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Figure 2.12: Illustration of the source-free DASiS method proposed by Liu et al.
(2021c) where during training only a well-trained source model and the unlabeled
target domain set are accessible but not the source data. To tackle the problem, they
propose a dual attention distillation mechanism (DAM) to help the generator G to
synthesize “source” samples with meaningful semantic context, beneficial to efficient
pixel-level domain knowledge transfer. Furthermore, an entropy-based intra-domain
patch-level supervision module (IPSM) leverages the correctly segmented patches
during the model adaptation stage. Figure based on Liu et al. (2021c).

imized. Kundu et al. (2021) decompose the problem into performing
first source-only domain generalization and then adapting the model to
the target by self-training with reliable target pseudo-labels.

2.4.7 Domain generalization

In domain generalization (DG), the goal is to generalize a model trained
on one or several source domains to new, unseen target domains. There-
fore, its main goal is learning domain-agnostic representations. As the
target domain is unknown at training time, most DG methods aim to
minimize the average risk over all possible target domains. According
to Wang et al. (2020b) and Zhou et al. (2020a), such DG methods
can be categorized into multiple groups, those relying on data random-
ization (Tobin et al., 2017), ensemble learning (Xu et al., 2014; Seo
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et al., 2020), meta-learning (Balaji et al., 2019; Li et al., 2019b; Rahman
et al., 2020) domain-invariant representation learning (Li et al., 2018c;
Motiian et al., 2017), feature disentanglement (Chattopadhyay et al.,
2020), self-supervised learning (Carlucci et al., 2019; Wang et al., 2020c),
invariant risk minimization (Arjovsky et al., 2020) and others.

While not devised ad hoc for SiS, several data augmentation methods
have been empirically shown to be well performing for the segmentation
task. Indeed, Volpi and Murino (2019), Volpi et al. (2019), and Qiao et al.
(2020) show that worst-case data augmentation strategies can improve
robustness of segmentation models. Volpi et al. (2019) propose to create
fictitious visual domains – that are hard for the model at hand – by
leveraging adversarial training to augment the source domain, and use
them to train the segmentation model. Qiao et al. (2020) extend this idea
by relying on meta-learning; to encourage out-of-domain augmentations,
the authors rely on a Wasserstein auto-encoder which is jointly learned
with the segmentation and domain augmentation within a meta-learning
framework. Volpi and Murino (2019) instead rely on standard image
transformations, by using random and evolution search to find the
worst-case perturbations that are further used as data augmentation
rules.

Concerning DG methods specifically designed for SiS (DGSiS), dif-
ferent techniques have been explored. Gong et al. (2019) propose to
learn domain-invariant representations via domain flow generation. The
main idea is to generate a continuous sequence of intermediate domains
between the source and the target, in order to bridge the gap between
them. To translate images from the source domain into an arbitrary
intermediate domain, an adversarial loss is used to control how the
intermediate domain is related to the two original ones (source and
target). Several intermediate domains of this kind are generated, such
that the discrepancy between the two domains is gradually reduced in
a manifold space.

Yue et al. (2019) rely on domain randomization, where – using aux-
iliary datasets – the synthetic images are translated with multiple real
image styles to effectively learn domain-invariant and scale-invariant
representations. Instead, Jin et al. (2020) consider style normalization
and restitution module to enhance the generalization capabilities, while
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preserving the discriminative power of the networks. The style nor-
malization is performed by instance normalization to filter out the
style variations and therefore foster generalization. To ensure high dis-
criminative leverage, a restitution step adaptively distills task-relevant
discriminative features from the residual (i.e. the difference between
original and style normalized features), which are then exploited to
learn the network.

Liu et al. (2020a) extend domain-specific BN layers proposed by Seo
et al. (2020) for MRI image segmentation, where at inference time
an ensemble of prediction is generated and their confidence-weighted
average is considered as the final prediction. Choi et al. (2021) propose an
instance selective whitening loss which disentangles domain-specific and
domain-invariant properties from higher-order statistics of the feature
representation, selectively suppressing the domain-specific ones. Lee
et al. (2022) learn domain-generalized semantic features by leveraging
a variety of contents and styles from the wild, where they diversify
the styles of the source features with the help of wild styles. This is
carried out by adding several AdaIN (Huang and Belongie, 2017) layers
to the feature extractor during the learning process and increasing the
intra-class content variability with content extension to the wild in the
latent embedding space.

Closely related with DGSiS, Lengyel et al. (2021) propose zero-
shot day-to-night domain adaptation to improve performance on unseen
illumination conditions without the need of accessing target samples.
The proposed method relies on task agnostic physics-based illumination
priors where a trainable Color Invariant Convolution layer is used to
transform the input to a domain-invariant representation. It is shown
that this layer allows reducing the day-night domain shift in the feature
map activations throughout the network and, in turn, improves SiS on
samples recorded at night.

2.4.8 Semi-supervised domain adaptation

Semi-supervised learning (SSL) methods exploit at training time ac-
cessibility to both a small amount of labeled data and a large amount
of unlabeled data. After gaining traction for more standard classifica-
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tion tasks, recently several semi-supervised methods have emerged that
address SiS problems (see Section 1.3.1).

The standard UDA setting shares with semi-supervised learning
the availability at training time of labeled and unlabeled data; the
core difference is that in the semi-supervised framework both sets are
drawn from the same domain (i.i.d. assumption), whereas in UDA they
are drawn from different data distributions (source and target). In
Section 2.3 we have discussed how several strategies from the SSL
literature such as pseudo-labeling, self-training, entropy minimization,
self-ensembling, have been inherited by DASiS and tailored for cross-
domain tasks. Semi-supervised domain adaptation can be seen as a
particular case of them, where on the one hand we can see part of
pseudo-labels replaced by GT target labels, or on the other hand we
can see the source labeled data extended with labeled target samples.

To address such a scenario, Wang et al. (2020e) leverage a few labeled
images from the target domain to supervise the segmentation task and
the adversarial semantic-level feature adaptation. They show that the
proposed strategy improves also over a target domain’s oracle. Chen
et al. (2021a) tackle the semi-supervised DASiS problem with a method
that relies on a variant of CutMix (Yun et al., 2019) and a student-
teacher approach based on self-training. Two kinds of data mixing
methods are proposed: on the one hand, directly mixing labeled images
from two domains from holistic view; on the other hand, region-level
data mixing is achieved by applying two masks to labeled images
from the two domains. The latter encourages the model to extract
domain-invariant features about semantic structure from partial view.
Then, a student model is trained by distilling knowledge from the two
complementary domain-mixed teachers – one obtained by direct mixing
and another obtained by region-level data mixing – and which is refined
in a self-training manner for another few rounds of teachers trained
with pseudo-labels.

Zhu et al. (2021) first train an ensemble of student models with
various backbones and network architectures using both labeled source
data and pseudo labeled target data where the labels are obtained with
a teacher model trained on the labeled source. This model is further
finetuned for the target domain using a small set of labeled samples not
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Figure 2.13: A summary of the standard domain adaptation (also known as closed
set), partial DA, open set DA and open-partial DA with respect to the overlap
between the label sets of the source and the target domains. Universal DA tends to
address all cases simultaneously.

only to further adapt to the new domain but also to address class-label
mismatch across domains (see also Section 2.4.10).

2.4.9 Active DASiS

Active DASiS (Ning et al., 2021; Shin et al., 2021) is related to semi-
supervised DASiS. While for the latter we assume that a small set of
target samples are already labeled, in the former, an algorithm selects
itself the images or pixels to be annotated by human annotators, and
use them to update the segmentation model over iterations. Ning et
al. (2021) propose a multi-anchor based active learning strategy to
identify the most complementary and representative samples for manual
annotation by exploiting the feature distributions across the target and
source domains. Shin et al. (2021) – inspired by the maximum classifier
discrepancy (Saito et al., 2018b) – propose a method that selects the
regions to be annotated based on the mismatch in predictions across
the two classifiers.
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More recently, Xie et al. (2022a) proposed a new region-based acqui-
sition strategy for active DASiS, which relies on both region impurity
and prediction uncertainty, in order to identify the image regions that
are both diverse in spatial adjacency and uncertain in terms of output
predictions.

2.4.10 Class-label mismatch across domains

Another way of sub-dividing domain adaptation approaches is by con-
sidering the mismatch between source and target class sets. Specifically,
in partial domain adaptation (Zhang et al., 2018a; Cao et al., 2018; Cao
et al., 2019) the class set of the source is a super-set of the target one,
while open set domain adaptation (Panareda Busto and Gall, 2017; Saito
et al., 2018c; Rakshit et al., 2020; Jing et al., 2021) assumes that extra
private classes exist in the target domain. Finally, universal domain
adaptation (Fu et al., 2020; Li et al., 2021a; Saito and Saenko, 2021;
Ma et al., 2021) integrates both open set and partial DA (see different
cases in Figure 2.13).

For what concerns segmentation, Gong et al. (2021b) propose an
MSDA strategy where the label space of the target domain is defined as
the union of the label spaces of all the different source domains and the
knowledge in different label spaces is transferred from different source
domains to the target domain, where the missing labels are replaced by
pseudo-labels.

Liu et al. (2021b) propose an optimization scheme which alternates
between 1) conditional distribution alignment with adversarial UDA
relying on estimated class-wise balancing in the target, and 2) target
label proportion estimates with Mean Matching (Gretton et al., 2009),
assuming conditional distributions alignment between the domains.



3
Datasets and Benchmarks

In this section, we discuss datasets and evaluation protocols commonly
adopted in SiS (Section 3.1), DASiS (Section 3.2) and related problems
– such as class-incremental SiS (Section 3.1.4) and online adaptation
(Section 3.2.2). We further cover the main evaluation metrics used in SiS
(Section 3.1.1), also discussing more recent alternatives. Furthermore,
we emphasize that segmentation performance in terms of accuracy or
mIoU is only one of the aspects one should consider when assessing
the effectiveness of an SiS approach, discussing the trade-off between
accuracy and efficiency in Section 3.1.2 and the vulnerability of SiS
models in Section 3.1.3.

3.1 SiS Datasets and Benchmarks

In SiS, we can mainly distinguish the following groups of datasets and
benchmarks that we call object segmentation (Obj) datasets, image
parsing (IP) datasets and scene understanding in autonomous driving
(AD) scenarios. Note that the separation between these datasets are not
strict, for example the AD is a particular case of IP. There is also a large
set of medical image (Med) segmentation datasets and benchmarks (Liu
et al., 2021a) that we do not discuss here.

84
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PASCAL Visual Object Classes (VOC) (Everingham et al., 2010)
is one of the first and most popular object segmentation datasets. It
contains 20 classes to be segmented plus the background. Several versions
are available, the most used ones being the Pascal-VOC 2007 (9,963
images) and Pascal-VOC 2012 (11,5K images). MS COCO (Lin et al.,
2014) is another challenging object segmentation dataset containing
complex everyday scenes with objects in their natural contexts. It
contains 328K images with segmentations of 91 object class.

Image or scene parsing datasets contain both things (objects) and
stuff classes. One of the first such dataset is MSRC-21 (Shotton et
al., 2009), containing 21 categories and 591 images. The Pascal Con-
text (Mottaghi et al., 2014), extends to IP the segmented images from
Pascal-VOC 2010 by labeling the background. It has 10,1K images and
400 classes, however mainly a subset of 59 classes is used, ignoring the
others as they have rather low frequency in the dataset. SiftFlow (Liu
et al., 2009) includes 2,688 images from the LabelMe database (Russell
et al., 2008) annotated with 33 semantic classes. The Stanford back-
ground dataset (Gould et al., 2009) contains 715 outdoor images from
LabelMe, MSRC and Pascal-VOC where the aim is to separate the
foreground (single class) from the background, identifying the seven
following semantic stuff regions: “sky”, “tree”, “road”, “grass”, “water”,
“mountain” and “buildings”. The most used IP dataset is ADE20K (Zhou
et al., 2019a) which contains 20K images with 150 semantic categories.

There exists a large set of image parsing datasets proposed in the
literature specifically built for urban scene understanding, targeting
autonomous driving (AD) scenarios. One of the most popular datasets
used to compare SiS methods is Cityscapes (Cordts et al., 2016), but
with the increased interest for the AD scenarios, recently a large set
of labeled urban scene datasets have been proposed, both real and
synthetically rendered with game-engines. In Table 3.1 we provide a
summary of such AD oriented SiS datasets with their most important
characteristics: the number of classes, the number of annotated samples,
whether images are real or rendered, whether the dataset contains
video sequences (and not only temporally uncorrelated images), the
geographical location (for what concerns simulated datasets, we report
the simulated area indicated, if available), and whether the dataset
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allows setting arbitrary conditions (seasonal, weather, daylight, etc. ).
In addition, in Table 3.2 we present a summary of the classes available in
these different datasets, to ease the comprehension of the compatibility
between different models. They are also interesting in the light of
incremental SiS (see Section 1.3.4) and new DASiS problems where the
sets of semantic classes in the source and target sets do not coincide
(shortly discussed in Section 2.4.10).

Table 3.2: Categories of which annotation is provided in different SiS datasets. We
report classes available in several (at least three) distinct datasets: some datasets,
e.g. CamVid (Brostow et al., 2009), contain a variety of other categories.
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Bicycle ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Bridge ✓ ✓ ✓
Building ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Bus ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Car ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Caravan ✓ ✓ ✓
Fence ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Guard rail ✓ ✓ ✓
Lane marking ✓ ✓ ✓
Motorcycle ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Parking ✓ ✓ ✓ ✓
Person ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Pole ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Rail track ✓ ✓
Rider ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Road ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sky ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sidewalk ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Terrain ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Train ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Traffic light ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Traffic sign ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Truck ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Tunnel ✓ ✓ ✓
Vegetation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Wall ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Annotating SiS datasets. Generally, software tools that allow us to
annotate images are based on an interface where the user can manipulate
polygons that are shaped according to the image’s instances; such
polygons are further processed into segmentation maps. Some examples
of popular, open-source annotation tools are LabelMe,1 Label Studio,2
and VIA.3

Initially taking an hour or more per image (Cordts et al., 2016),
recent semi-automatic tools manage to reduce the annotation time
for common urban classes (“people”, “road” “surface” or “vehicles”)
by relying, e.g. on pre-trained models for object detection,4– however
they still require manual verification and validation. For an up-to-date
collection of annotation tools,please refer to the link in the footnote.5

3.1.1 Evaluating SiS performance

To evaluate SiS, the overall pixel accuracy and the per-class accuracy
have been proposed by Shotton et al. (2009). The former computes the
proportion of correctly labeled pixels, while the latter calculates the
proportion of correctly labeled pixels for each class and then averages
over the classes. The Jaccard Index (JI), more popularly known as inter-
section over the union (IoU), takes into account both the false positives
and the missed values for each class. It measures the intersection over
the union of the labeled segments for each class and reports the average.
This measure became the standard to evaluate SiS models, after having
been introduced in the Pascal-VOC challenge (Everingham et al., 2010)
in 2008. Long et al. (2015a) propose, in addition, a frequency weighted
IoU measure where the IoU for each class is weighted by the frequency
of GT pixels corresponding to that class.

We schematize these main metrics below, following the notation used
by Long et al. (2015a). Let nij be the number of pixels from the ith class
that are classified as belonging to the jth class where i, j ∈ {1, · · · , C},
C being the number of different semantic classes. Let ti = ∑

j nij be
the total number of pixels of the ith class. The metrics introduced above
are defined as follows:

1https://github.com/wkentaro/labelme
2https://github.com/heartexlabs/label-studio
3https://gitlab.com/vgg/via
4https://github.com/virajmavani/semi-auto-image-annotation-tool
5https://github.com/heartexlabs/awesome-data-labeling.

https://github.com/wkentaro/labelme
https://github.com/heartexlabs/label-studio
https://gitlab.com/vgg/via
https://github.com/virajmavani/semi-auto-image-annotation-tool
https://github.com/heartexlabs/awesome-data-labeling
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The above measures are generally derived from the confusion matrix
computed over the whole dataset having the main advantage that there
is no need to handle the absent classes in each image. While these
metrics are the most used to evaluate and compare SiS and DASiS
models, we would like to mention below a few other metrics that have
been introduced in the literature to evaluate SiS models, and could also
be interesting for evaluating DASiS.

Instead of relying on the confusion matrix computed over the whole
dataset, Csurka et al. (2013) propose to evaluate the pixel accuracy,
the mean accuracy and the IoU for each image individually, where
the IoU is computed by averaging only over the classes present in the
GT segmentation map of the image. The main rationale behind this is
that the measures computed over the whole dataset do not enable to
distinguish an algorithm that delivers a medium score on all images from
an algorithm that performs very well on some images and very poorly
on others (they could yield very similar averages). To better assess such
differences, Csurka et al. (2013) propose to measure the percentage
of images with a performance higher than a given threshold. Then,
given a pair of approaches, the percentage of images for which one of
the method outperforms the other one is analyzed, e.g. considering the
statistical difference of two segmentation algorithms with t-test. Finally,
it has also been noticed by Csurka et al. (2013) that per-image scores
reduce the bias w.r.t. large objects, as missing or incorrectly segmented
small objects have low impact on the global confusion matrix.

Another important aspect of semantic segmentation is the accu-
rate semantic border detection. To evaluate the accuracy of boundary
segmentation, Kohli et al. (2009) propose Trimap that defines a nar-
row band around each contour and computes pixel accuracies within



90 Datasets and Benchmarks

the given band. Instead, to measure the quality of the segmentation
boundary, Csurka et al. (2013) extend the Berkeley contour matching
(BCM) score (Martin et al., 2004) – proposed to evaluate similarity
between unsupervised segmentation and human annotations – to SiS,
where a BCM score is computed between the GT and predicted con-
tours corresponding to each semantic class (after binarizing first both
segmentation maps). The scores are averaged over the classes present
in the GT map.

3.1.2 Trade-off between accuracy and efficiency

The segmentation accuracy is not a unique metric when evaluating
and comparing segmentation models. Indeed, SiS can be extremely
demanding for high computational resources, particularly due to the
fact that it is a pixel-level task, as opposed to image-level tasks. In real
applications where latency is crucial, one needs to trade-off accuracy
for efficiency. Indeed, as previously discussed, being a key element of
scene understanding for autonomous driving, robotic applications or
augmented reality, semantic segmentation models should accommodate
real-time settings.

Historical methods, in order to achieve reasonable performance,
often required a costly post-processing. While deep neural network
models have significantly boosted the segmentation performance, in
most cases this improvement came with a significant cost increase both
on model parameters and computation, both at train and inference
time.

Several solutions have been proposed to find a good trade-off between
accuracy and efficiency. One possibility is to reduce the computational
complexity by restricting the input size (Wu et al., 2017; Zhao et al.,
2018b); yet, this comes with the loss of fine-grain details and, hence,
accuracy drops – especially around the boundaries. An alternative
solution is to boost the inference speed by pruning the channels of the
network, especially in the early stages of the base model (Badrinarayanan
et al., 2017; Paszke et al., 2016). Due to the fact that such solutions
weaken the spatial capacity, Paszke et al. (2016) propose to abandon the
downsampling operations in the last stage, at the cost of diminishing
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the receptive field of the model. To further overcome the loss of spatial
details, these methods often use U-shape architectures to gradually
increase the spatial resolution and to fill some missing details that
however introduces additional computational cost.

Instead, Yu et al. (2018a) propose the Bilateral Segmentation Net-
work (BiSeNet) where two components – the Spatial Path and the
Context Path – are devised to confront with the loss of spatial informa-
tion and shrinkage of receptive field respectively.

The segmentation accuracy obtained with Deep Convolutional Net-
works has further been improved by Transformer-based SiS models
(see some examples in Section 1.2.9). These networks rely on high-
performing attention-based modules which have linear complexity with
respect to the embedding dimension, but a quadratic complexity with
respect to the number of tokens. In vision applications, the number
of tokens is typically linearly correlated with the image resolution –
yielding a quadratic increase in complexity and memory usage in mod-
els strictly using self-attention, such as ViT (Dosovitskiy et al., 2021).
To alleviate this increase, local attention modules were proposed such
as Swin (Liu et al., 2021d). Furthermore, Vaswani et al. (2021) found
that a combination of local attention blocks and convolutions result
in the best trade-off between memory requirements and translational
equivariance. Instead Hassani et al. (2022) propose the Neighborhood
Attention Transformer, which limits each query token’s receptive field
to a fixed-size neighborhood around its corresponding tokens in the key-
value pair, controlling the receptive fields in order to balance between
translational invariance and equivariance. Zhang et al. (2022) propose a
mobile-friendly architecture named Token Pyramid Vision Transformer
(TopFormer) which takes tokens from various scales as input to produce
scale-aware semantic features with very light computation cost.

Finally, the recent ConvNeXt architecture proposed by Liu et al.
(2022) competes favorably with Transformers in terms of accuracy,
scalability and robustness across several tasks including SiS, while
maintaining the efficiency of standard ConvNets.
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3.1.3 Vulnerability of SiS models

While very effective when handling samples from the training distribu-
tion, it is well known that deep learning-based models can suffer when
facing corrupted samples (Hendrycks and Dietterich, 2019). Crucially,
these models suffer from perturbations that are imperceptible to the
human eye, but cause severe prediction errors (Szegedy et al., 2014).
Modern SiS models are also vulnerable in this sense, therefore increasing
their robustness against natural or adversarial perturbations is an active
research area. Finally, models with a finite set of classes, including SiS
models, can suffer when instances of previously unseen categories appear
in a scene.
Adversarial perturbations. Xie et al. (2017) and Metzen et al. (2017)
concurrently show for the first time that semantic segmentation models
can also be fooled by perturbations that are imperceptible to the human
eye. Metzen et al. (2017) show that it is possible to craft universal
perturbations (Moosavi-Dezfooli et al., 2017), namely perturbations
that are sample-agnostic, that can make the network consistently miss-
classify a given input. In particular, they show how to craft perturbations
to 1) make the SiS model provide always the same output, and 2) make
the model avoid predicting “cars” or “pedestrians”. Xie et al. (2017)
instead focus on sample-specific adversarial perturbations, proposing
the “Dense Adversary Generation” algorithm. Both works raise security
issues on the reliability of SiS models, and therefore the overall systems
they are embedded into.
Corruptions. Hendrycks and Dietterich (2019) showed that deep
neural network models for image classification are extremely brittle
against simple input miss-specification, such as Gaussian and salt-
and-pepper noises, but also to artificial corruptions and contrast or
brightness modifications such as simulated fog and snow. Kamann
and Rother (2020) extend this analysis to SiS models and show that
the same conclusions hold: the models are very vulnerable against
simple corruptions, which – even though perceptible – would not cause
particular difficulties to a human eye.
Unseen classes. The out-of-distribution (OOD) detection (Hendrycks
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and Gimpel, 2017) literature is a very active topic in computer vision:
given that the number of classes a model can predict is finite, it is
important to be able to handle images with unknown instances. In the
case of SiS models, this results in being able to determine when some
pixels in an image are related to a class the model had never been
trained on.

Blum et al. (2019) and Chan et al. (2021) propose the “Fishyscapes”
and the “SegmentMeIfYouCan” benchmarks that evaluate and compare
SiS models on the task of determining which pixels are related to
unknown classes. The latter further introduces a new problem where
the task is to determine pixels associated with road obstacles (from
known and unknown classes). For what concerns methods for the task of
determining pixels from unknown classes, most of them are derived from
the OOD literature (Hendrycks and Gimpel, 2017; Liang et al., 2018a)
and the uncertainty literature (Kendall and Gal, 2017). While methods
in both fields are typically designed for classification tasks, they can be
extended to SiS by applying them at pixel level instead of image level.

3.1.4 Class-incremental SiS protocols

In Section 1.3.4 we formulated the problem of class-incremental learn-
ing – in the context of SiS. In the following lines, we review the main
protocols used to evaluate such class-incremental SiS algorithms. For
reference, the first protocols for this task have been proposed by Cermelli
et al. (2020) and Michieli and Zanuttigh (2021).

The learning procedure, as typical in continual learning, is divided
in a sequence of different tasks. In the context of class-incremental SiS,
solving a task means learning to segment novel classes, given images
where the classes of interest are annotated with GT, and the others
are considered as “background”. The first task is defined as a learning
procedure over a multitude of different classes (as generally happens
during model’s pre-training). In the following tasks, one or more classes
are learned, but generally in inferior numbers with respect to a number
of categories learned during the first task.

Formally, given a dataset D with N classes, we will indicate the
benchmark as M − K, which means that the model is first trained
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on M classes, then it learns K new classes at the time (resulting in
1 + (N − M)/K consecutive learning steps). Current class-incremental
SiS approaches were evaluated mainly on Pascal VOC’12 (Everingham
et al., 2010) (20 classes) and ADE20K (Zhou et al., 2019a) (150 classes)
datasets. Following the notations above, the following benchmarks have
been considered by the community: for Pascal-VOC 2012, 19 − 1 (2
tasks), 15 − 5 (5 tasks) and 15 − 1 (2 tasks) and for ADE20K, 150 − 50
(2 tasks), 150 − 50 (2 tasks) and 50 − 50 (3 tasks).

Furthermore, two different setups are considered by Cermelli et al.
(2020): the Disjoint one, where each task is defined by images that are
unique for that task only – which cannot contain classes associated with
classes that will be seen in the future; and the Overlapped one, where
future classes may be present, and images can be replicated across
different tasks.

3.2 DASiS Benchmarks

Understanding traffic scene images taken from vehicle mounted cameras
is important for such advanced tasks as autonomous driving and driver
assistance. It is a challenging problem due to large variations under
different weather or illumination conditions (Di et al., 2018) or when a
model needs to cope with different environments such as city, countryside
and highway.

Even though relying on real samples (such as the datasets listed
in Table 3.1) allows assessing model performance in conditions that
are more similar to deployment ones, manually annotating an image
at pixel level for SiS is a very tedious and costly operation. Recent
progress in computer graphics and modern graphics platforms such as
game engines raise the prospect of easily obtaining labeled, synthetic
datasets. Some examples in this direction are SYNTHIA (Ros et al.,
2016) and GTA-5 (Richter et al., 2016) (see examples in Figure 3.1, the
middle and right sides).

However, models learned on such datasets might not be optimal
due to the domain shift between synthetic and real data. To tackle this
problem, a large set of DASiS methods have been proposed, most of
which we surveyed in Section 2. These methods start with a model pre-
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GTA-5 SYNTHIACityscapes

Figure 3.1: Left: Samples from Cityscapes (Cordts et al., 2016) recorded in the
real world. They allow to evaluate the model performance on images that resemble
the ones an agent will cope with at deployment; the difficulty of collecting real,
large-scale datasets is the huge cost required to obtain fine annotations. Middle:
Synthetic data from GTA-5 (Richter et al., 2016), obtained with high quality game
engines, which makes easy the pixel-wise annotation for SiS and scene understanding.
However, if the domain shift between real and synthetic data is not addressed, models
trained on GTA-5 perform poorly on Cityscapes. Right: An autonomous car must
cope with large variations, such as day vs. night, weather condition changes, or
structural differences, which might affect the image appearance even when the image
is taken from the same viewpoint. Simulation engines allow generating large number
of samples from urban environments in different conditions, as for example in the
SYNTHIA (Ros et al., 2016) dataset.

trained on the simulated source data (typically GTA-5 or SYNTHIA)
which is adapted to real target data, for which it is assumed no access
to ground-truth annotations. Typically, the Cityscapes (Cordts et al.,
2016) dataset is considered in most papers (see examples in Figure 3.1
(left)), however more recent methods started to provide results on
newer datasets (listed in Table 3.1). This scenario mimics the realistic
conditions such that a large database of simulated, labeled samples is
available for training, and the model needs to be adapted to real world
conditions without having access to ground-truth annotations.

We summarize the most common settings used in the DASiS re-
search in Table 3.3. They have been introduced in the pioneering DASiS
study by Hoffman et al. (2016). As the first row in the table indi-
cates, the most widely used benchmark is GTA-5 (Richter et al., 2016)
→ Cityscapes (Cordts et al., 2016) task. It represents a sim-to-real
adaptation problem, since GTA-5 was conceived to be consistent with
Cityscapes annotations. Following the notation from Section 2.1, the
source dataset DS is defined by GTA-5 (Richter et al., 2016) annotated
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Table 3.3: The most widely used benchmarks within the DASiS community. The first
column indicates the source dataset (labeled images available); the second column
indicates the target dataset (unlabeled images available); the third column indicates
the type of adaptation problem.

Main benchmarks for DASiS
Source
domain

Target
domain

Adaptation
type

GTA-5 Cityscapes Sim-to-real

SYNTHIA-RAND Cityscapes Sim-to-real

Cityscapes (Train) Cityscapes (Val) Cross-city (real)

SYNTHIA (Fall) SYNTHIA (Winter) Cross-weather (sim)

samples, and the target dataset DT is defined by Cityscapes (Cordts
et al., 2016) (non-annotated) samples.

Naturally, datasets generated with the help of simulation engines
are significantly larger, as they are able to generate synthetic data
under a broad set of conditions (the only exception is GTA-5 (Richter
et al., 2016), that is considerably large but does not allow the user
to set different visual conditions). Still, in order to evaluate how the
models will perform in the real environment on various real conditions,
these synthetic datasets might be not sufficient. Therefore, an important
contribution to the semantic segmentation landscape is the real-image
ACDC dataset (Sakaridis et al., 2021), that is both reasonably large
(slightly smaller than Cityscapes (Cordts et al., 2016)) and flexible
in terms of visual conditions: researchers can indeed choose between
foggy, dark, rainy and snowy scenarios. More importantly, samples are
recorded from the same streets in such different conditions, allowing to
properly assess the impact of adverse weather/daylight on the models
(see examples in Figure 3.2 (left)). RainCityscape (Hu et al., 2019a)
and FoggyCityscape (Sakaridis et al., 2018) (see examples in Figure 3.2
(right)) are also extremely valuable in this direction, but in this case the
weather conditions are simulated (on top of the real Cityscapes images).
We think that these datasets are better suited than the currently used
Cityscapes dataset and we expect that in the future DASiS methods
will be also evaluated on these or similar datasets.
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ACDC RainCityscapes FoggyCityscapesCityscapes

Figure 3.2: Left: Example images from ACDC dataset (Sakaridis et al., 2021) which
permits to assess the model performance on real-world weather condition changes
(fog, night, snow, rain). Right: Example images from RainCityscape (Hu et al.,
2019a) and FoggyCityscape (Sakaridis et al., 2018), which provide Cityscapes (Cordts
et al., 2016) images with simulated rain and fog, respectively.

3.2.1 DA and DASiS evaluation protocols

There exist two main evaluation protocols in DA, namely, transductive
and inductive. Transductive DA aims to learn prediction models that
directly assign labels to the target instances available during training.
In other words, the model aims to perform well on the sample set DT
used to learn the model. Instead, the inductive UDA measures the
performance of the learned models on held-out target instances that
are sampled from the same target distribution, D̂T ∼ DT . While in
classical DA most often the transductive protocol is considered, in the
case of DASiS, the inductive setting is the preferred one.

Selecting the best models, hyper-parameter settings is rather chal-
lenging in practice. As described by Saito et al. (2021), many methods
do hyper-parameter optimization using the risk computed on target
domain’s annotated samples, which contradicts the core assumption
of UDA – i.e. not using any labels from the target set. Furthermore,
in many papers, a clear description about how the final model has
been selected for evaluation is often missing, making the comparisons
between different methods rather questionable. Even if in the inductive
evaluation protocol a different set is used to select the model, an obvious
question arises: If the model has access to target labels for evaluation,
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why not use those labeled target samples to improve the model in a
semi-supervised DA fashion?

Fairer strategies such as transfer cross-validation (Zhong et al., 2010),
reverse cross-validation (Ganin et al., 2016), importance-weighted cross-
validation (Long et al., 2018) and deep embedded validation (You et al.,
2019) rely on source labels, evaluating the risk in the source domain
and/or exploiting the data distributions. However, these strategies
remain sub-optimal due to the fact that they still rely on the source
risk which is not necessarily a good estimator of the target risk in the
presence of a large domain gap (Saito et al., 2021).

Instead, Saito et al. (2021) revisit the unsupervised validation crite-
rion based on the classifier entropy and show that when the classification
model produces confident and low-entropy outputs on target samples
the target features are discriminative and the predictions likely reliable.
However, they claim that such criterion is unable to detect when a DA
method falsely align target samples with the source and incorrectly
changes the neighborhood structure. To overcome this limitation, they
propose a model selection method based on soft neighborhood density
measure to evaluate the discriminability of target features.

3.2.2 Online adaptation for SiS protocols

In Section 2.4.5, we had introduced the problem of online adaptation
for SiS for which Volpi et al. (2022) propose a three-stage benchmark
to train, validate and test corresponding algorithms (the OASIS bench-
mark). In general, the three steps are 1) pre-train a model on simulated
data; 2) validate the adaptation algorithm on simulated sequences of
temporally correlated samples; 3) test the validated model/method on
real sequences (see illustration in Figure 3.3). In practice, they pro-
pose to use GTA-5 dataset (Richter et al., 2016) in 1), the SYNTHIA
dataset (Ros et al., 2016) in 2), and Cityscapes (Cordts et al., 2016)
(original and with artificial weather conditions) and ACDC (Sakaridis
et al., 2021) datasets for final testing in 3). The proposed pipeline allows
evaluating the algorithm performance on environments that are unseen,
both at training and validation, mimicking real-world deployment in
unfamiliar environments.
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4
Related Segmentation Tasks

In this section, we discuss briefly some tasks that are closely related to
SiS such as instance segmentation (Section 4.1), panoptic segmentation
(Section 4.2) and medical image segmentation (Section 4.3).

4.1 Instance Segmentation (InstS)

SiS is strongly related to Instance Segmentation (Yang et al., 2012),
which can be seen as a combination of object detection and semantic
segmentation. The goal in InstS is indeed to detect and segment all
instances of a category in a given image, while also ensuring that each
instance is uniquely identified (see illustration in Figure 4.1 (middle)).

Early instance segmentation methods are based on complex graphical
models (Silberman et al., 2012; Zhang et al., 2016b; Arnab and Torr,
2017), post-processing object detection (Yang et al., 2012; Tighe et al.,
2014; Chen et al., 2015), or models built on top of segment region
proposals (Hariharan et al., 2014; Pinheiro et al., 2015).

Amongst more recent deep methods relying on object detectors,
Mask R-CNN (He et al., 2017) is one of the most successful ones. It
employs an R-CNN object detector (Girshick et al., 2014) and region
of interest (RoI) operations – typically RoIPool or RoIAlign – to crop
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Figure 4.1: Semantic image segmentation is related to Instance Segmentation (Yang
et al., 2012) and to Panoptic Segmentation (Kirillov et al., 2019b). Instance Segmen-
tation can be seen as a combination of object detection and semantic segmentation
where the aim is to detect and segment all instances of a category in an image and
such that each instance is uniquely identified. Panoptic Segmentation mixes semantic
and instance segmentation, where for some things classes – countable objects such as
“cars”, “pedestrians”, etc. – each instance is segmented individually, while for other
classes especially those belonging to stuff – “road”, “sky”, “vegetation”, “buildings”
– all classes are labeled with a single class label.

the instance from the feature maps. Liu et al. (2018b) propose to
further improve Mask R-CNN by 1) bottom-up path augmentation,
which shortens the information path between lower layers and top
most features, 2) by adaptive feature pooling, and 3) by including a
complementary branch that captures different views for each proposal.

Novotny et al. (2018) extend Mask R-CNN with semi-convolutional
operators, which mix information extracted from the convolutional net-
work with information about the global pixel location. YOLACT (Bolya
et al., 2019) and BlendMask (Chen et al., 2020a) can be seen as a refor-
mulation of Mask R-CNN, which decouple RoI detection and feature
maps used for mask prediction. MaskLab (Chen et al., 2018a) builds on
top of Faster-RCNN (Ren et al., 2015) and for each RoI perform fore-
ground/background segmentation by exploiting semantic segmentation
and direction logits.

In contrast to the above detect-then-segment strategies, many re-
cent methods build on the top of deep segmentation models reviewed
in Section 1.2. FCN models, discussed in Section 1.2.3, are amongst
the most popular ones. One of such models, InstanceCut (Kirillov et
al., 2017), combines the output of two pipelines – a FCN based SiS
model and an instance-aware edge detection, processed independently,
– with an image partitionning block that merges the super-pixels into
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connected components with a class label assigned to each component.
InstanceFCN (Dai et al., 2016), instead of generating one score map per
semantic class, computes 3×3 position-sensitive score maps where each
pixel corresponds to a classifier prediction concerning its relative posi-
tions to an object instance. Li et al. (2017) propose a fully convolutional
Instance-aware SiS model where position-sensitive inside/outside score
maps are used to perform object segmentation and detection jointly and
simultaneously. The SOLO models (Wang et al., 2020d; 2020d) assign
categories to each pixel within an instance according to the instance’s
location and size, converting instance segmentation into a single-shot
classification-solvable problem using FCNs to output dense predictions.

Dilated Convolutional Models (discussed in Section 1.2.7), and
in particular DeepLab-CRF-LargeFOV (Chen et al., 2017b), are fine-
tuned and refined for InstS by Liang et al. (2018b) and by Zhang et
al. (2016b). The latter combines it with Densely Connected MRFs to
improve instance boundaries (similarly to methods in Section 1.2.2).

Ren and Zemel (2017) propose an end-to-end RNN architecture with
an attention mechanism (see also Section 1.2.8). This model combines
a box proposal network responsible for localizing objects of interest
with a DeconvNet (Noh et al., 2015) to segment image pixels within
the box. Arun et al. (2020) modify a UNet architecture where they
explicitly model the uncertainty in the pseudo label generation process
using a conditional distribution.

A transformer-based model (see Section 1.2.9) is applied by Xu et al.
(2021) who propose a co-scale mechanism to image transformers, where
encoder branches are maintained at separate scales while engaging
attention across scales. They also design a Conv-attention module
which performs relative position embeddings with convolutions in the
factorized attention module.

Finally, as for SiS (Section 1.3.2), a large set of weakly supervised
methods that rely on bounding box supervision have been proposed also
for instance segmentation. For example, Tian et al. (2019) train jointly a
Mask R-CNN detection and segmentation branches, estimate the object
instance map inside each detected bounding box and then generate
the positive and negative bags using the bounding box annotations.
Tian et al. (2021) extends this architecture with CondInst (Tian et
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al., 2020) employing dynamic instance-aware networks, conditioned on
instances which eliminates the need for RoI operations. Lan et al. (2021)
propose a self-ensembling framework where instance segmentation and
semantic correspondences are jointly learned by a structured teacher
and bounding box supervision. The teacher is a structured energy model
incorporating a pairwise potential and a cross-image potential to model
the pairwise pixel relationships both within and across the boxes.

4.2 Panoptic Segmentation (PanS)

Panoptic Segmentation (Kirillov et al., 2019b) unifies semantic and
instance segmentation, where for several things classes – countable ob-
jects such as “cars”, “pedestrians”, etc. – each instance is segmented
individually, while for classes belonging to stuff – “road”, “sky”, “vege-
tation”, “buildings” – all pixels are labeled with a single class label (see
illustration in Figure 4.1 (right)).

Kirillov et al. (2019b), emphasizing the importance of tackling se-
mantic and instance segmentation jointly, introduce the panoptic quality
metric in order to evaluate jointly semantic and instance segmentation,
and thus open the path to a new set of methods called Panoptic Seg-
mentation. The key idea is that for the things classes the model has to
predict both the belongings to the given things class as well as distin-
guish the instances within the class, while for stuff only the semantic
class label needs to be assigned to the relevant pixels.

To solve PanS, Kirillov et al. (2019b) propose to combine PSP-
Net (Zhao et al., 2017) with Mask R-CNN (He et al., 2017), where the
models process the inputs independently and then their outputs are
combined in a post-processing step. de Geus et al. (2018) propose to
jointly train two branches with a shared backbone, one being a Mask
R-CNN for the InstS and a second one relying on an Augmented Pyra-
mid Pooling module for SiS. The Attention Guided Unified Network (Li
et al., 2019a) combines a proposal attention module that selects regions
potentially containing things with a mask attention module to refine
the boundary between things and stuff.

Liu et al. (2019) propose an end-to-end occlusion aware pipeline,
where 1) the instance segmentation and stuff segmentation branches –
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sharing the backbone features – are optimized by the accumulated losses,
and 2) the head branches are fine-tuned on the specific tasks. A spatial
ranking module addresses the ambiguities of the overlapping relationship.
Instead, Xiong et al. (2019) design a deformable convolution based SiS
head and a Mask R-CNN based InstS head, and solve the two subtasks
simultaneously. Sofiiuk et al. (2019) propose a fully differentiable end-
to-end network for class-agnostic instance segmentation which, jointly
trained with an SiS Branch, can perform panoptic segmentation.

Li et al. (2018e), building on top of the Dynamically Instantiated
Network (Arnab and Torr, 2017), propose a weakly supervised model
for PanS where things classes are weakly supervised by bounding boxes,
and stuff classes with image-level tags.

Several PanS methods have been proposed on the top of DeepLab
(Chen et al., 2017b). For instance, Porzi et al. (2019) propose an archi-
tecture which seamlessly integrates multi-scale features generated by
an FPN (Lin et al., 2017b) with contextual information conveyed by a
lightweight DeepLab-like module. Yang et al. (2019) adopt the encoder-
decoder paradigm where SiS and InstS predictions are generated from
the shared decoder output and then fused to produce the final image
parsing result. This model has been extended by Cheng et al. (2020),
by adding a dual-ASPP and a dual-decoder structure for each sub-task
branch, and by Wang et al. (2020a) where axial-attention blocks are
used instead of ASPP.

Gao et al. (2019) propose to jointly train semantic class labeling with
a pixel-pair affinity pyramid that computes – in a hierarchical manner –
the probability that two pixels belong to the same instance. Furthermore,
they incorporate, with the learned affinity pyramid, a novel cascaded
graph partition module to sequentially generate instances from coarse to
fine. Yuan et al. (2020) proposed the Object-Contextual Representations
(OCR) for SiS and generalized it to Panoptic Segmentation where the
Panoptic-FPN (Kirillov et al., 2019a) head computes soft object regions
and then the OCR head predicts a refined semantic segmentation map.

The Efficient Panoptic Segmentation architecture (Mohan and Val-
ada, 2021) combines a semantic head that aggregates fine and contextual
features coherently with a Mask R-CNN-like instance head. The final
panoptic segmentation output is obtained by the panoptic fusion module
that congruously integrates the output logits from both heads.
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Amongst recent transformer-based solutions we can mention the
Masked-attention Mask Transformer (Mask2Former) (Cheng et al.,
2022) which extracts localized features by constraining cross-attention
within predicted mask regions.

4.3 Medical Image Segmentation

Medical image segmentation has an important role in sustainable medi-
cal care. With the proliferation of medical imaging equipment, i.e. com-
puted tomography (CT), magnetic resonance imaging (MRI), positron-
emission tomography, X-ray and ultrasound imaging (UI), microscopy
and fundus retinal images are widely used in clinics, and medical images
segmentation can effectively help doctors in their diagnoses (Greenspan
et al., 2016; Ahuja, 2019; King Jr., 2018; Jan and Chen, 2020).

Here we only briefly mention a few works on medical image seg-
mentation that heavily rely on architectures discussed in Sections 1
and 2; for a detailed survey on medical image segmentation we refer
the interested reader to the survey by Liu et al. (2021a).

FCN and 3D-FCN based methods have been applied for segmenting
brain tumors (Myronenko, 2017; Nie et al., 2019) or pathological lung
tissues in MRI (Novikov et al., 2018; Anthimopoulos et al., 2019), eye
vessels in fundoscopy images (Edupuganti et al., 2017), or skin lesions
in dermatology images (Mirikharaji and Hamarneh, 2018).

3D-Unet has been used by Borne et al. (2019) to segment brain in
MRI, by Ye et al. (2019a) to segment heart in CT, and by Zhang and
Chung (2018) to segment eye vessel in fundoscopy images. Oktay et al.
(2018) propose Attention U-Net to segment pancreas in CT.

A SegNet based network has been applied to segment musculoskeletal
MRI images (Liu et al., 2018a) and cells on microscopic images (Tran
et al., 2018). Different works rely on GAN-based models, in order to
predict segmentation maps that are similar to humans’ annotations.
Such models have been used for MRI image segmentation (Rezaei et al.,
2017; Moeskops et al., 2017; Han et al., 2018) and in histopathology
(Wang et al., 2017).

DASiS solutions have been designed for MRI segmentation of liver
and kidney (Valindria et al., 2018), neuroanatomy (Novosad et al., 2019),
retinal vessel (Huang et al., 2020b), white matter hyper-intensities (Or-
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bes-Arteaga et al., 2019), and multiple sclerosis lesions (Ackaouy et al.,
2020). Furthermore, Bermúdez-Chacón et al. (2018) apply DASiS to
microscopic image segmentation; Dou et al. (2018) and Jiang et al.
(2018) perform adaptation between CT and MRI images for cardiac
structure segmentation and for lung cancer segmentation, respectively.
Venkataramani et al. (2019) propose a continuous DA framework for
X-ray lung segmentation. Cross-center adaptation results of multiple
sclerosis lesions and brain tumor segmentation have been considered by
Li et al. (2020b) and adaptation between gray matter segmentations
Perone et al., 2019.

Li et al. (2021b) insert a polymorphic transformer (polyformer) into
a U-Net model which relying on prototype embeddings, dynamically
transforms the target-domain features making them semantically com-
patible with the source domain. They showcase their model on optic
disc/cup segmentation in fundus images and polyp segmentation in
colonoscopy images.



5
Conclusive Remarks

5.1 Monograph Summary

In this monograph, we provide a comprehensive and up-to-date review of
both semantic image segmentation (SiS) in general as well as the domain
adaptation of semantic image segmentation (DASiS) literature. We
describe in both cases the main trends and organize methods according
to their most important characteristics.

We extend the discussions on the two topics with scenarios that de-
part from the classical setting. In the case of SiS, we overview methods ex-
ploiting unlabeled or weakly labeled data, curriculum or self-supervised
strategies or methods learning the semantic classes incrementally. Con-
cerning DASiS, we go beyond the typical single labeled source single
unlabeled target and survey proposed methods for tasks such as multi-
source or multi-target DA, domain incremental learning, source-free
adaptation and domain generalization. We also discuss semi-supervised,
active and online domain adaptation.

We complement the discussion around SiS and DASiS topics with an
extensive list of the existing datasets, evaluation metrics and protocols
– designed to compare different approaches. Finally, we conclude the
monograph with a brief overview of three strongly related tasks: instance
segmentation, panoptic segmentation and medical image segmentation.

107



108 Summary and Perspectives

As the survey shows, both SiS and DASiS are very active research
fields, with an increasing number of approaches being developed by the
community and actively integrated in advanced industrial applications
and solutions for autonomous driving, robot navigation, medical imaging,
remote sensing, etc. Therefore, we believe that the community can
benefit from our survey – in particular, PhD students and researchers
who are just beginning their work in these fields, but also developers
from the industry, willing to integrate SiS or DASiS in their systems,
can find answers to their numerous questions.

5.2 SiS with Additional Modalities

This monograph mainly focuses on SiS and DASiS, where raw images
represent the only information available for scene understanding. How-
ever, both SiS and DASiS can benefit from additional visual information
such as depth, 3D maps, text or other – when available. There exists
already a large amount of work in this direction and we expect that
this line of research will grow further. Though out of the monograph
scope, for the sake of completeness we highlight here some of the key
directions. The interested reader can find more details in the surveys
by Zhang et al. (2021), Feng et al. (2021), and Zhou et al. (2019b).

Additional visual modalities include near-infrared images (Salamati
et al., 2014; Liang et al., 2022), thermal images (Ha et al., 2017; Sun
et al., 2019d), depth (Wang et al., 2015; Qi et al., 2017; Schneider
et al., 2017), surface-normals (Eigen and Fergus, 2015), 3D LiDAR
point clouds (Kim et al., 2018; Jaritz et al., 2018; Caltagirone et al.,
2019), etc. Any of these modalities brings additional information about
a scene and can be used to learn a better segmentation model.

One solution to address semantic segmentation with extra modalities
is to deploy multi-modal fusion networks (Hazirbas et al., 2016; Li et al.,
2016; Valada et al., 2017; Schneider et al., 2017; Caltagirone et al., 2019;
Sun et al., 2019d) where multiple modalities are given as input to the
system – both at training and inference time – and the model outputs
pixel-level semantic labeling. To enhance the fusion between RGB and
depth, Hu et al. (2019b) propose to add Attention Complementary
Modules between the single modality branches and the Fusion branch
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allowing the model to selectively gather features from the RGB and
depth branches.

Alternatively, the second modality is considered as privileged infor-
mation given at training time but not at test time. Most works on this
direction focused on joint monocular depth estimation and semantic
segmentation showing that joint training allows improving the perfor-
mance of both tasks (Wang et al., 2015; Mousavian et al., 2016; Zhang
et al., 2018b; Kendall et al., 2018; Chen et al., 2018d; He et al., 2021b).
A multi-task guided Prediction-and-Distillation Network was designed
by Xu et al. (2018), where the model first predicts a set of intermediate
auxiliary tasks ranging from low to high level, and then such predictions
are used as multi-modal input to a multi-modal distillation module,
opted at learning the final tasks. Jiao et al. (2018) rely on a synergy
network to automatically learn information propagation between the
two tasks. Gao et al. (2022) use a shared attention block for the two
tasks with contextual supervision and rely on a feature sharing module
to fuse the task-specific features.

Similarly, extra modality was used as privileged information to
improve the segmentation accuracy of DASIS methods, in particular
using depth information available for the source data by Lee et al.
(2019c), Vu et al. (2019b), and Chen et al. (2019b) and Mordan et
al. (2020). Instead of using depth information as explicit supervision,
Guizilini et al. (2021) infer and leverage depth in the target domain
through self-supervision from geometric video-level cues, and use it as
the primary source of domain adaptation.

5.3 Perspectives in SIS

Concerning the perspectives, the most important one comes from the
introduction of foundation models (Yuan et al., 2021b) aimed at gaining
and applying knowledge with good transferability. They consider the
lifecycle of multiple deep learning applications as divided into two
stages: pre-training and fine-tuning. In the first stage, the deep model
is pre-trained on an upstream task with large-scale data (labeled or
unlabeled) for gaining transferable knowledge. In the second stage,
the pre-trained model is adapted to a downstream task in the target
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domain with labeled data. If the downstream task only has unlabeled
data, then additional labeled data from another source domain of
identical learning task but different data distribution can be used to
improve the performance. Compared with supervised pre-training, self-
supervised pre-training leads to competitive or sometimes even better
performance on downstream tasks such as object detection and semantic
segmentation (Yuan et al., 2021b).

We believe that while these models provide good initialization for
the methods discussed in this monograph, without undermining their
value, we can foresee that future solutions will exploit and combine the
strengths of both worlds.

As an example, we can mention Language driven Semantic Segmen-
tation (Li et al., 2022) and Referring Image Segmentation (Hu et al.,
2016) which are emerging and challenging segmentation problems. Their
aim is to segment a target semantic region in an image by understanding
a given natural linguistic expression. In early solutions, the models were
trained on specific referring image segmentation datasets and where
visual and linguistic features are simply concatenated (Liu et al., 2017;
Li et al., 2018f) or combined with Cross-Modal Self-Attention (Ye et al.,
2019b), using linguistic features to choose amongst visual target regions
(proposed by e.g. Mask R-CNN) (Yu et al., 2018b), or in a multi-task
setting by optimizing expression comprehension and segmentation simul-
taneously (Luo et al., 2020). More recent solutions are vision-language
transformer based architectures (Ding et al., 2021), which build upon
and exploit the inherited knowledge of transformer-based joint language
and vision models pretrained in a self-supervised manner on very large
datasets. It is worth mentioning the successful Contrastive Language-
Image Pre-training (CLIP) model (Radford et al., 2021), used by Wang
et al. (2022b) for referring image segmentation.
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AD Autonomous Driving

ADAS Advanced Driving Assistance System

AdaIN Adaptive Instance Normalization

AdvF Adversarial Features

AAL Axial Attention Layer

BiMaL Bijective Maximum Likelihood

BN Batch Normalization

CAM Classification Activation Maps

CIM Corrupted Image Modeling

CoT Co-training

contrL Contrastive Loss

CNN Convolutional Neural Network

CurrL Curriculum Learning

CT Computed Tomography
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DA Domain Adaptation

UDA Unsupervised Domain Adaptation

MSDA Multi-source DA

MTDA Multi-target DA

DASiS Domain Adaptation for Semantic Image Segmentation

OCDA Open-compound DA

DC Domain Classifier

DCN Deconvolution Network

sDCN stacked DCNs

DG Domain Generalization

DM Discrepancy Minimisation

DUC Dense Upsampling Convolutions

EM Expectation-Maximization

EMA Exponential Moving Average

FCN Fully Convolutional Network

RbFCN Resnet based FCN

dFCN Dilated FCN

FPA Feature Pyramid Attention

FPN Feature Pyramid Network

SFPN Semantic FPN

FRRN Full Resolution Residual Network

FSS Few-Shot Segmentation
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iFSS Incremental FFS

GAN Generative Adversarial Network

GPA Global Attention Upsample

GSA Global Sub-sampled Attention

GRL Gradient Reversal Layer

GT Ground-truth

HDC Hybrid Dilated Convolutions

HR High-resolution

HTwinT Hybrid Twin Transformer

HTr Hierarchical Transformer

IoU Intersection-over-union

IP Image Parsing

IST Image Style Transfer

InstS Instance Segmentation

JI Jaccard Index

KL Kullback-Leibler

LGA Locally-grouped Attention

LocCons Local Consistency Loss

LSTM Long Short Term Memory

MaskT Mask Transformer

MAE Masked Autoencoder

MST Masked Self-Supervised Transformer
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MCD Multi-classifier Discrepancy

MCG Multi-scale Combinatorial Grouping

MCP Maximum Class Probability

MHSA Multiheaded Self-attention

MMD Maximum Mean Discrepancy

MLP Multi Layer Perceptron

MRI Magnetic Resonance Imaging

MSE Mean Squared Error

Obj Object Segmentation

OOD Out-of-distribution

PanS Panoptic Segmentation

PSA Point-wise Spatial Attention

CPAM Position and Channel Attention Module

PUP Progressive Upsampling

PL Pseudo Labels

PFW Positional Feature Weight

PSPNet Pyramid Scene Parsing Network

PVT Pyramid Vision Transformer

RF Random Field

CRF Conditional Random Field

dCRF Dense CRF

MRF Markov Random Field
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RCU Residual Convolutional Units

RKHS Reproducing Kernel Hilbert Space

RNN Recurrent Neural Network

RoI Region of Interest

SPP Spatial Pyramid Pooling

ASPP Atrous SPP

SRA Spatial Reduction Attention

SemCons Semantic Consistency

SIM Self-information Map

wSIM weighted SIM

SSL Semi-supervised Learning

SeMask Semantically Masked Transformer

SAB SeMask Attention Block

SEC Seed-expand-constrain

SelfEns Self-ensembling

SelfT Self-training

SGD Stochastic Gradient Descent

SiS Semantic Image Segmentation

SP Super-pixels

SPL Self-paced Learning

SVM Support Vector Machine

SwT Swin Transformer
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sTrL Stacked Transformer Layers

TEM Target Entropy Minimisation

TTA Test-Time Adaptation

CoTTA Continual Test-Time Domain Adaptation

TENT Test-Time Adaptation by Entropy Minimization

ViT Visual Transformer

XCA Cross-covariance Attention
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